Abstract:The paper focuses on the algorithm for improving the quality of 3D reconstruction and segmentation in DSP-SLAM by enhancing the RGB image quality. SharpSLAM algorithm developed by us aims to decrease the influence of high dynamic motion on visual object-oriented SLAM through image deblurring, improving all aspects of object-oriented SLAM, including localization, mapping, and object reconstruction. The experimental results revealed noticeable improvement in object detection quality, with F-score increased from 82.9% to 86.2% due to the higher number of features and corresponding map points. The RMSE of signed distance function has also decreased from 17.2 to 15.4 cm. Furthermore, our solution has enhanced object positioning, with an increase in the IoU from 74.5% to 75.7%. SharpSLAM algorithm has the potential to highly improve the quality of 3D reconstruction and segmentation in DSP-SLAM and to impact a wide range of fields, including robotics, autonomous vehicles, and augmented reality.
Abstract:This paper introduces CognitiveOS, a disruptive system based on multiple transformer-based models, endowing robots of various types with cognitive abilities not only for communication with humans but also for task resolution through physical interaction with the environment. The system operates smoothly on different robotic platforms without extra tuning. It autonomously makes decisions for task execution by analyzing the environment and using information from its long-term memory. The system underwent testing on various platforms, including quadruped robots and manipulator robots, showcasing its capability to formulate behavioral plans even for robots whose behavioral examples were absent in the training dataset. Experimental results revealed the system's high performance in advanced task comprehension and adaptability, emphasizing its potential for real-world applications. The chapters of this paper describe the key components of the system and the dataset structure. The dataset for fine-tuning step generation model is provided at the following link: link coming soon
Abstract:Quadruped robots have the distinct ability to adapt their body and step height to navigate through cluttered environments. Nonetheless, for these robots to utilize their full potential in real-world scenarios, they require awareness of their environment and obstacle geometry. We propose a novel multi-agent robotic system that incorporates cutting-edge technologies. The proposed solution features a 3D neural reconstruction algorithm that enables navigation of a quadruped robot in both static and semi-static environments. The prior areas of the environment are also segmented according to the quadruped robots' abilities to pass them. Moreover, we have developed an adaptive neural field optimal motion planner (ANFOMP) that considers both collision probability and obstacle height in 2D space.Our new navigation and mapping approach enables quadruped robots to adjust their height and behavior to navigate under arches and push through obstacles with smaller dimensions. The multi-agent mapping operation has proven to be highly accurate, with an obstacle reconstruction precision of 82%. Moreover, the quadruped robot can navigate with 3D obstacle information and the ANFOMP system, resulting in a 33.3% reduction in path length and a 70% reduction in navigation time.