Abstract:Accurately determining salient regions of an image is challenging when labeled data is scarce. DINO-based self-supervised approaches have recently leveraged meaningful image semantics captured by patch-wise features for locating foreground objects. Recent methods have also incorporated intuitive priors and demonstrated value in unsupervised methods for object partitioning. In this paper, we propose SEMPART, which jointly infers coarse and fine bi-partitions over an image's DINO-based semantic graph. Furthermore, SEMPART preserves fine boundary details using graph-driven regularization and successfully distills the coarse mask semantics into the fine mask. Our salient object detection and single object localization findings suggest that SEMPART produces high-quality masks rapidly without additional post-processing and benefits from co-optimizing the coarse and fine branches.
Abstract:Edit fidelity is a significant issue in open-world controllable generative image editing. Recently, CLIP-based approaches have traded off simplicity to alleviate these problems by introducing spatial attention in a handpicked layer of a StyleGAN. In this paper, we propose CoralStyleCLIP, which incorporates a multi-layer attention-guided blending strategy in the feature space of StyleGAN2 for obtaining high-fidelity edits. We propose multiple forms of our co-optimized region and layer selection strategy to demonstrate the variation of time complexity with the quality of edits over different architectural intricacies while preserving simplicity. We conduct extensive experimental analysis and benchmark our method against state-of-the-art CLIP-based methods. Our findings suggest that CoralStyleCLIP results in high-quality edits while preserving the ease of use.
Abstract:We emphasize the importance of asking the right question when interpreting the decisions of a learning model. We discuss a natural extension of the theoretical machinery from Janzing et. al. 2020, which answers the question "Why did my model predict a person has cancer?" for answering a more involved question, "What caused my model to predict a person has cancer?" While the former quantifies the direct effects of variables on the model, the latter also accounts for indirect effects, thereby providing meaningful insights wherever human beings can reason in terms of cause and effect. We propose three broad categories for interpretations: observational, model-specific and causal each of which are significant in their own right. Furthermore, this paper quantifies feature relevance by weaving different natures of interpretations together with different measures as characteristic functions for Shapley symmetrization. Besides the widely used expected value of the model, we also discuss measures of statistical uncertainty and dispersion as informative candidates, and their merits in generating explanations for each data point, some of which are used in this context for the first time. These measures are not only useful for studying the influence of variables on the model output, but also on the predictive performance of the model, and for that we propose relevant characteristic functions that are also used for the first time.
Abstract:As a massive number of the Internet of Things (IoT) devices are deployed, the security and privacy issues in IoT arouse more and more attention. The IoT attacks are causing tremendous loss to the IoT networks and even threatening human safety. Compared to traditional networks, IoT networks have unique characteristics, which make the attack detection more challenging. First, the heterogeneity of platforms, protocols, software, and hardware exposes various vulnerabilities. Second, in addition to the traditional high-rate attacks, the low-rate attacks are also extensively used by IoT attackers to obfuscate the legitimate and malicious traffic. These low-rate attacks are challenging to detect and can persist in the networks. Last, the attackers are evolving to be more intelligent and can dynamically change their attack strategies based on the environment feedback to avoid being detected, making it more challenging for the defender to discover a consistent pattern to identify the attack. In order to adapt to the new characteristics in IoT attacks, we propose a reinforcement learning-based attack detection model that can automatically learn and recognize the transformation of the attack pattern. Therefore, we can continuously detect IoT attacks with less human intervention. In this paper, we explore the crucial features of IoT traffics and utilize the entropy-based metrics to detect both the high-rate and low-rate IoT attacks. Afterward, we leverage the reinforcement learning technique to continuously adjust the attack detection threshold based on the detection feedback, which optimizes the detection and the false alarm rate. We conduct extensive experiments over a real IoT attack dataset and demonstrate the effectiveness of our IoT attack detection framework.
Abstract:Sentiment Analysis is an important algorithm in Natural Language Processing which is used to detect sentiment within some text. In our project, we had chosen to work on analyzing reviews of various drugs which have been reviewed in form of texts and have also been given a rating on a scale from 1-10. We had obtained this data set from the UCI machine learning repository which had 2 data sets: train and test (split as 75-25\%). We had split the number rating for the drug into three classes in general: positive (7-10), negative (1-4) or neutral(4-7). There are multiple reviews for the drugs that belong to a similar condition and we decided to investigate how the reviews for different conditions use different words impact the ratings of the drugs. Our intention was mainly to implement supervised machine learning classification algorithms that predict the class of the rating using the textual review. We had primarily implemented different embeddings such as Term Frequency Inverse Document Frequency (TFIDF) and the Count Vectors (CV). We had trained models on the most popular conditions such as "Birth Control", "Depression" and "Pain" within the data set and obtained good results while predicting the test data sets.
Abstract:Communication bottleneck has been identified as a significant issue in distributed optimization of large-scale learning models. Recently, several approaches to mitigate this problem have been proposed, including different forms of gradient compression or computing local models and mixing them iteratively. In this paper we propose \emph{Qsparse-local-SGD} algorithm, which combines aggressive sparsification with quantization and local computation along with error compensation, by keeping track of the difference between the true and compressed gradients. We propose both synchronous and asynchronous implementations of \emph{Qsparse-local-SGD}. We analyze convergence for \emph{Qsparse-local-SGD} in the \emph{distributed} setting for smooth non-convex and convex objective functions. We demonstrate that \emph{Qsparse-local-SGD} converges at the same rate as vanilla distributed SGD for many important classes of sparsifiers and quantizers. We use \emph{Qsparse-local-SGD} to train ResNet-50 on ImageNet, and show that it results in significant savings over the state-of-the-art, in the number of bits transmitted to reach target accuracy.