Abstract:Edit fidelity is a significant issue in open-world controllable generative image editing. Recently, CLIP-based approaches have traded off simplicity to alleviate these problems by introducing spatial attention in a handpicked layer of a StyleGAN. In this paper, we propose CoralStyleCLIP, which incorporates a multi-layer attention-guided blending strategy in the feature space of StyleGAN2 for obtaining high-fidelity edits. We propose multiple forms of our co-optimized region and layer selection strategy to demonstrate the variation of time complexity with the quality of edits over different architectural intricacies while preserving simplicity. We conduct extensive experimental analysis and benchmark our method against state-of-the-art CLIP-based methods. Our findings suggest that CoralStyleCLIP results in high-quality edits while preserving the ease of use.
Abstract:We propose a fairness measure relaxing the equality conditions in the popular equal odds fairness regime for classification. We design an iterative, model-agnostic, grid-based heuristic that calibrates the outcomes per sensitive attribute value to conform to the measure. The heuristic is designed to handle high arity attribute values and performs a per attribute sanitization of outcomes across different protected attribute values. We also extend our heuristic for multiple attributes. Highlighting our motivating application, fraud detection, we show that the proposed heuristic is able to achieve fairness across multiple values of a single protected attribute, multiple protected attributes. When compared to current fairness techniques, that focus on two groups, we achieve comparable performance across several public data sets.
Abstract:Image content is a predominant factor in marketing campaigns, websites and banners. Today, marketers and designers spend considerable time and money in generating such professional quality content. We take a step towards simplifying this process using Generative Adversarial Networks (GANs). We propose a simple and novel conditioning strategy which allows generation of images conditioned on given semantic attributes using a generator trained for an unconditional image generation task. Our approach is based on modifying latent vectors, using directional vectors of relevant semantic attributes in latent space. Our method is designed to work with both discrete (binary and multi-class) and continuous image attributes. We show the applicability of our proposed approach, named Directional GAN, on multiple public datasets, with an average accuracy of 86.4% across different attributes.
Abstract:Orchestration of campaigns for online display advertising requires marketers to forecast audience size at the granularity of specific attributes of web traffic, characterized by the categorical nature of all attributes (e.g. {US, Chrome, Mobile}). With each attribute taking many values, the very large attribute combination set makes estimating audience size for any specific attribute combination challenging. We modify Eclat, a frequent itemset mining (FIM) algorithm, to accommodate categorical variables. For consequent frequent and infrequent itemsets, we then provide forecasts using time series analysis with conditional probabilities to aid approximation. An extensive simulation, based on typical characteristics of audience data, is built to stress test our modified-FIM approach. In two real datasets, comparison with baselines including neural network models, shows that our method lowers computation time of FIM for categorical data. On hold out samples we show that the proposed forecasting method outperforms these baselines.