Abstract:We explore how scalable robot data can address real-world challenges for generalized robotic manipulation. Introducing AgiBot World, a large-scale platform comprising over 1 million trajectories across 217 tasks in five deployment scenarios, we achieve an order-of-magnitude increase in data scale compared to existing datasets. Accelerated by a standardized collection pipeline with human-in-the-loop verification, AgiBot World guarantees high-quality and diverse data distribution. It is extensible from grippers to dexterous hands and visuo-tactile sensors for fine-grained skill acquisition. Building on top of data, we introduce Genie Operator-1 (GO-1), a novel generalist policy that leverages latent action representations to maximize data utilization, demonstrating predictable performance scaling with increased data volume. Policies pre-trained on our dataset achieve an average performance improvement of 30% over those trained on Open X-Embodiment, both in in-domain and out-of-distribution scenarios. GO-1 exhibits exceptional capability in real-world dexterous and long-horizon tasks, achieving over 60% success rate on complex tasks and outperforming prior RDT approach by 32%. By open-sourcing the dataset, tools, and models, we aim to democratize access to large-scale, high-quality robot data, advancing the pursuit of scalable and general-purpose intelligence.
Abstract:The demand for the retrieval of complex scene data in autonomous driving is increasing, especially as passenger vehicles have been equipped with the ability to navigate urban settings, with the imperative to address long-tail scenarios. Meanwhile, under the pre-existing two dimensional image retrieval method, some problems may arise with scene retrieval, such as lack of global feature representation and subpar text retrieval ability. To address these issues, we have proposed \textbf{BEV-CLIP}, the first multimodal Bird's-Eye View(BEV) retrieval methodology that utilizes descriptive text as an input to retrieve corresponding scenes. This methodology applies the semantic feature extraction abilities of a large language model (LLM) to facilitate zero-shot retrieval of extensive text descriptions, and incorporates semi-structured information from a knowledge graph to improve the semantic richness and variety of the language embedding. Our experiments result in 87.66% accuracy on NuScenes dataset in text-to-BEV feature retrieval. The demonstrated cases in our paper support that our retrieval method is also indicated to be effective in identifying certain long-tail corner scenes.