Abstract:Image segmentation is a challenging task influenced by multiple sources of uncertainty, such as the data labeling process or the sampling of training data. In this paper we focus on binary segmentation and address these challenges using conformal prediction, a family of model- and data-agnostic methods for uncertainty quantification that provide finite-sample theoretical guarantees and applicable to any pretrained predictor. Our approach involves computing nonconformity scores, a type of prediction residual, on held-out calibration data not used during training. We use dilation, one of the fundamental operations in mathematical morphology, to construct a margin added to the borders of predicted segmentation masks. At inference, the predicted set formed by the mask and its margin contains the ground-truth mask with high probability, at a confidence level specified by the user. The size of the margin serves as an indicator of predictive uncertainty for a given model and dataset. We work in a regime of minimal information as we do not require any feedback from the predictor: only the predicted masks are needed for computing the prediction sets. Hence, our method is applicable to any segmentation model, including those based on deep learning; we evaluate our approach on several medical imaging applications.
Abstract:Since the seminal paper of Hendrycks et al. arXiv:1610.02136, Post-hoc deep Out-of-Distribution (OOD) detection has expanded rapidly. As a result, practitioners working on safety-critical applications and seeking to improve the robustness of a neural network now have a plethora of methods to choose from. However, no method outperforms every other on every dataset arXiv:2210.07242, so the current best practice is to test all the methods on the datasets at hand. This paper shifts focus from developing new methods to effectively combining existing ones to enhance OOD detection. We propose and compare four different strategies for integrating multiple detection scores into a unified OOD detector, based on techniques such as majority vote, empirical and copulas-based Cumulative Distribution Function modeling, and multivariate quantiles based on optimal transport. We extend common OOD evaluation metrics -- like AUROC and FPR at fixed TPR rates -- to these multi-dimensional OOD detectors, allowing us to evaluate them and compare them with individual methods on extensive benchmarks. Furthermore, we propose a series of guidelines to choose what OOD detectors to combine in more realistic settings, i.e. in the absence of known OOD data, relying on principles drawn from Outlier Exposure arXiv:1812.04606. The code is available at https://github.com/paulnovello/multi-ood.
Abstract:State-of-the-art approaches for training Differentially Private (DP) Deep Neural Networks (DNN) faces difficulties to estimate tight bounds on the sensitivity of the network's layers, and instead rely on a process of per-sample gradient clipping. This clipping process not only biases the direction of gradients but also proves costly both in memory consumption and in computation. To provide sensitivity bounds and bypass the drawbacks of the clipping process, our theoretical analysis of Lipschitz constrained networks reveals an unexplored link between the Lipschitz constant with respect to their input and the one with respect to their parameters. By bounding the Lipschitz constant of each layer with respect to its parameters we guarantee DP training of these networks. This analysis not only allows the computation of the aforementioned sensitivities at scale but also provides leads on to how maximize the gradient-to-noise ratio for fixed privacy guarantees. To facilitate the application of Lipschitz networks and foster robust and certifiable learning under privacy guarantees, we provide a Python package that implements building blocks allowing the construction and private training of such networks.