Abstract:The role of multiple-choice questions (MCQs) as effective learning tools has been debated in past research. While MCQs are widely used due to their ease in grading, open response questions are increasingly used for instruction, given advances in large language models (LLMs) for automated grading. This study evaluates MCQs effectiveness relative to open-response questions, both individually and in combination, on learning. These activities are embedded within six tutor lessons on advocacy. Using a posttest-only randomized control design, we compare the performance of 234 tutors (790 lesson completions) across three conditions: MCQ only, open response only, and a combination of both. We find no significant learning differences across conditions at posttest, but tutors in the MCQ condition took significantly less time to complete instruction. These findings suggest that MCQs are as effective, and more efficient, than open response tasks for learning when practice time is limited. To further enhance efficiency, we autograded open responses using GPT-4o and GPT-4-turbo. GPT models demonstrate proficiency for purposes of low-stakes assessment, though further research is needed for broader use. This study contributes a dataset of lesson log data, human annotation rubrics, and LLM prompts to promote transparency and reproducibility.
Abstract:In supervised machine learning (SML) research, large training datasets are essential for valid results. However, obtaining primary data in learning analytics (LA) is challenging. Data augmentation can address this by expanding and diversifying data, though its use in LA remains underexplored. This paper systematically compares data augmentation techniques and their impact on prediction performance in a typical LA task: prediction of academic outcomes. Augmentation is demonstrated on four SML models, which we successfully replicated from a previous LAK study based on AUC values. Among 21 augmentation techniques, SMOTE-ENN sampling performed the best, improving the average AUC by 0.01 and approximately halving the training time compared to the baseline models. In addition, we compared 99 combinations of chaining 21 techniques, and found minor, although statistically significant, improvements across models when adding noise to SMOTE-ENN (+0.014). Notably, some augmentation techniques significantly lowered predictive performance or increased performance fluctuation related to random chance. This paper's contribution is twofold. Primarily, our empirical findings show that sampling techniques provide the most statistically reliable performance improvements for LA applications of SML, and are computationally more efficient than deep generation methods with complex hyperparameter settings. Second, the LA community may benefit from validating a recent study through independent replication.
Abstract:Algorithmic bias continues to be a key concern of learning analytics. We study the statistical properties of the Absolute Between-ROC Area (ABROCA) metric. This fairness measure quantifies group-level differences in classifier performance through the absolute difference in ROC curves. ABROCA is particularly useful for detecting nuanced performance differences even when overall Area Under the ROC Curve (AUC) values are similar. We sample ABROCA under various conditions, including varying AUC differences and class distributions. We find that ABROCA distributions exhibit high skewness dependent on sample sizes, AUC differences, and class imbalance. When assessing whether a classifier is biased, this skewness inflates ABROCA values by chance, even when data is drawn (by simulation) from populations with equivalent ROC curves. These findings suggest that ABROCA requires careful interpretation given its distributional properties, especially when used to assess the degree of bias and when classes are imbalanced.
Abstract:Learning performance data (e.g., quiz scores and attempts) is significant for understanding learner engagement and knowledge mastery level. However, the learning performance data collected from Intelligent Tutoring Systems (ITSs) often suffers from sparsity, impacting the accuracy of learner modeling and knowledge assessments. To address this, we introduce the 3DG framework (3-Dimensional tensor for Densification and Generation), a novel approach combining tensor factorization with advanced generative models, including Generative Adversarial Network (GAN) and Generative Pre-trained Transformer (GPT), for enhanced data imputation and augmentation. The framework operates by first representing the data as a three-dimensional tensor, capturing dimensions of learners, questions, and attempts. It then densifies the data through tensor factorization and augments it using Generative AI models, tailored to individual learning patterns identified via clustering. Applied to data from an AutoTutor lesson by the Center for the Study of Adult Literacy (CSAL), the 3DG framework effectively generated scalable, personalized simulations of learning performance. Comparative analysis revealed GAN's superior reliability over GPT-4 in this context, underscoring its potential in addressing data sparsity challenges in ITSs and contributing to the advancement of personalized educational technology.
Abstract:Learning analytics research increasingly studies classroom learning with AI-based systems through rich contextual data from outside these systems, especially student-teacher interactions. One key challenge in leveraging such data is generating meaningful insights into effective teacher practices. Quantitative ethnography bears the potential to close this gap by combining multimodal data streams into networks of co-occurring behavior that drive insight into favorable learning conditions. The present study uses transmodal ordered network analysis to understand effective teacher practices in relationship to traditional metrics of in-system learning in a mathematics classroom working with AI tutors. Incorporating teacher practices captured by position tracking and human observation codes into modeling significantly improved the inference of how efficiently students improved in the AI tutor beyond a model with tutor log data features only. Comparing teacher practices by student learning rates, we find that students with low learning rates exhibited more hint use after monitoring. However, after an extended visit, students with low learning rates showed learning behavior similar to their high learning rate peers, achieving repeated correct attempts in the tutor. Observation notes suggest conceptual and procedural support differences can help explain visit effectiveness. Taken together, offering early conceptual support to students with low learning rates could make classroom practice with AI tutors more effective. This study advances the scientific understanding of effective teacher practice in classrooms learning with AI tutors and methodologies to make such practices visible.
Abstract:Numerous studies demonstrate the importance of self-regulation during learning by problem-solving. Recent work in learning analytics has largely examined students' use of SRL concerning overall learning gains. Limited research has related SRL to in-the-moment performance differences among learners. The present study investigates SRL behaviors in relationship to learners' moment-by-moment performance while working with intelligent tutoring systems for stoichiometry chemistry. We demonstrate the feasibility of labeling SRL behaviors based on AI-generated think-aloud transcripts, identifying the presence or absence of four SRL categories (processing information, planning, enacting, and realizing errors) in each utterance. Using the SRL codes, we conducted regression analyses to examine how the use of SRL in terms of presence, frequency, cyclical characteristics, and recency relate to student performance on subsequent steps in multi-step problems. A model considering students' SRL cycle characteristics outperformed a model only using in-the-moment SRL assessment. In line with theoretical predictions, students' actions during earlier, process-heavy stages of SRL cycles exhibited lower moment-by-moment correctness during problem-solving than later SRL cycle stages. We discuss system re-design opportunities to add SRL support during stages of processing and paths forward for using machine learning to speed research depending on the assessment of SRL based on transcription of think-aloud data.
Abstract:Course load analytics (CLA) inferred from LMS and enrollment features can offer a more accurate representation of course workload to students than credit hours and potentially aid in their course selection decisions. In this study, we produce and evaluate the first machine-learned predictions of student course load ratings and generalize our model to the full 10,000 course catalog of a large public university. We then retrospectively analyze longitudinal differences in the semester load of student course selections throughout their degree. CLA by semester shows that a student's first semester at the university is among their highest load semesters, as opposed to a credit hour-based analysis, which would indicate it is among their lowest. Investigating what role predicted course load may play in program retention, we find that students who maintain a semester load that is low as measured by credit hours but high as measured by CLA are more likely to leave their program of study. This discrepancy in course load is particularly pertinent in STEM and associated with high prerequisite courses. Our findings have implications for academic advising, institutional handling of the freshman experience, and student-facing analytics to help students better plan, anticipate, and prepare for their selected courses.
Abstract:The growing capability and availability of generative language models has enabled a wide range of new downstream tasks. Academic research has identified, quantified and mitigated biases present in language models but is rarely tailored to downstream tasks where wider impact on individuals and society can be felt. In this work, we leverage one popular generative language model, GPT-3, with the goal of writing unbiased and realistic job advertisements. We first assess the bias and realism of zero-shot generated advertisements and compare them to real-world advertisements. We then evaluate prompt-engineering and fine-tuning as debiasing methods. We find that prompt-engineering with diversity-encouraging prompts gives no significant improvement to bias, nor realism. Conversely, fine-tuning, especially on unbiased real advertisements, can improve realism and reduce bias.