Abstract:This full paper in the research track evaluates the usage of data logged from cybersecurity exercises in order to predict students who are potentially at risk of performing poorly. Hands-on exercises are essential for learning since they enable students to practice their skills. In cybersecurity, hands-on exercises are often complex and require knowledge of many topics. Therefore, students may miss solutions due to gaps in their knowledge and become frustrated, which impedes their learning. Targeted aid by the instructor helps, but since the instructor's time is limited, efficient ways to detect struggling students are needed. This paper develops automated tools to predict when a student is having difficulty. We formed a dataset with the actions of 313 students from two countries and two learning environments: KYPO CRP and EDURange. These data are used in machine learning algorithms to predict the success of students in exercises deployed in these environments. After extracting features from the data, we trained and cross-validated eight classifiers for predicting the exercise outcome and evaluated their predictive power. The contribution of this paper is comparing two approaches to feature engineering, modeling, and classification performance on data from two learning environments. Using the features from either learning environment, we were able to detect and distinguish between successful and struggling students. A decision tree classifier achieved the highest balanced accuracy and sensitivity with data from both learning environments. The results show that activity data from cybersecurity exercises are suitable for predicting student success. In a potential application, such models can aid instructors in detecting struggling students and providing targeted help. We publish data and code for building these models so that others can adopt or adapt them.
Abstract:This study explores the effectiveness of Large Language Models (LLMs) for Automatic Question Generation in educational settings. Three LLMs are compared in their ability to create questions from university slide text without fine-tuning. Questions were obtained in a two-step pipeline: first, answer phrases were extracted from slides using Llama 2-Chat 13B; then, the three models generated questions for each answer. To analyze whether the questions would be suitable in educational applications for students, a survey was conducted with 46 students who evaluated a total of 246 questions across five metrics: clarity, relevance, difficulty, slide relation, and question-answer alignment. Results indicate that GPT-3.5 and Llama 2-Chat 13B outperform Flan T5 XXL by a small margin, particularly in terms of clarity and question-answer alignment. GPT-3.5 especially excels at tailoring questions to match the input answers. The contribution of this research is the analysis of the capacity of LLMs for Automatic Question Generation in education.
Abstract:Algorithmic bias is a major issue in machine learning models in educational contexts. However, it has not yet been studied thoroughly in Asian learning contexts, and only limited work has considered algorithmic bias based on regional (sub-national) background. As a step towards addressing this gap, this paper examines the population of 5,986 students at a large university in the Philippines, investigating algorithmic bias based on students' regional background. The university used the Canvas learning management system (LMS) in its online courses across a broad range of domains. Over the period of three semesters, we collected 48.7 million log records of the students' activity in Canvas. We used these logs to train binary classification models that predict student grades from the LMS activity. The best-performing model reached AUC of 0.75 and weighted F1-score of 0.79. Subsequently, we examined the data for bias based on students' region. Evaluation using three metrics: AUC, weighted F1-score, and MADD showed consistent results across all demographic groups. Thus, no unfairness was observed against a particular student group in the grade predictions.
Abstract:Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and students may lose the motivation to continue in the course. To help address this problem, we build predictive models that automatically determine the urgency of each forum post, so that these posts can be brought to instructors' attention. This paper goes beyond previous work by predicting not just a binary decision cut-off but a post's level of urgency on a 7-point scale. First, we train and cross-validate several models on an original data set of 3,503 posts from MOOCs at University of Pennsylvania. Second, to determine the generalizability of our models, we test their performance on a separate, previously published data set of 29,604 posts from MOOCs at Stanford University. While the previous work on post urgency used only one data set, we evaluated the prediction across different data sets and courses. The best-performing model was a support vector regressor trained on the Universal Sentence Encoder embeddings of the posts, achieving an RMSE of 1.1 on the training set and 1.4 on the test set. Understanding the urgency of forum posts enables instructors to focus their time more effectively and, as a result, better support student learning.
Abstract:Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees' interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees' learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available.