Abstract:Equity is a core concern of learning analytics. However, applications that teach and assess equity skills, particularly at scale are lacking, often due to barriers in evaluating language. Advances in generative AI via large language models (LLMs) are being used in a wide range of applications, with this present work assessing its use in the equity domain. We evaluate tutor performance within an online lesson on enhancing tutors' skills when responding to students in potentially inequitable situations. We apply a mixed-method approach to analyze the performance of 81 undergraduate remote tutors. We find marginally significant learning gains with increases in tutors' self-reported confidence in their knowledge in responding to middle school students experiencing possible inequities from pretest to posttest. Both GPT-4o and GPT-4-turbo demonstrate proficiency in assessing tutors ability to predict and explain the best approach. Balancing performance, efficiency, and cost, we determine that few-shot learning using GPT-4o is the preferred model. This work makes available a dataset of lesson log data, tutor responses, rubrics for human annotation, and generative AI prompts. Future work involves leveling the difficulty among scenarios and enhancing LLM prompts for large-scale grading and assessment.
Abstract:The role of multiple-choice questions (MCQs) as effective learning tools has been debated in past research. While MCQs are widely used due to their ease in grading, open response questions are increasingly used for instruction, given advances in large language models (LLMs) for automated grading. This study evaluates MCQs effectiveness relative to open-response questions, both individually and in combination, on learning. These activities are embedded within six tutor lessons on advocacy. Using a posttest-only randomized control design, we compare the performance of 234 tutors (790 lesson completions) across three conditions: MCQ only, open response only, and a combination of both. We find no significant learning differences across conditions at posttest, but tutors in the MCQ condition took significantly less time to complete instruction. These findings suggest that MCQs are as effective, and more efficient, than open response tasks for learning when practice time is limited. To further enhance efficiency, we autograded open responses using GPT-4o and GPT-4-turbo. GPT models demonstrate proficiency for purposes of low-stakes assessment, though further research is needed for broader use. This study contributes a dataset of lesson log data, human annotation rubrics, and LLM prompts to promote transparency and reproducibility.
Abstract:Research suggests that tutors should adopt a strategic approach when addressing math errors made by low-efficacy students. Rather than drawing direct attention to the error, tutors should guide the students to identify and correct their mistakes on their own. While tutor lessons have introduced this pedagogical skill, human evaluation of tutors applying this strategy is arduous and time-consuming. Large language models (LLMs) show promise in providing real-time assessment to tutors during their actual tutoring sessions, yet little is known regarding their accuracy in this context. In this study, we investigate the capacity of generative AI to evaluate real-life tutors' performance in responding to students making math errors. By analyzing 50 real-life tutoring dialogues, we find both GPT-3.5-Turbo and GPT-4 demonstrate proficiency in assessing the criteria related to reacting to students making errors. However, both models exhibit limitations in recognizing instances where the student made an error. Notably, GPT-4 tends to overidentify instances of students making errors, often attributing student uncertainty or inferring potential errors where human evaluators did not. Future work will focus on enhancing generalizability by assessing a larger dataset of dialogues and evaluating learning transfer. Specifically, we will analyze the performance of tutors in real-life scenarios when responding to students' math errors before and after lesson completion on this crucial tutoring skill.