Amazon.com
Abstract:We present a simple yet effective self-supervised pre-training method for image harmonization which can leverage large-scale unannotated image datasets. To achieve this goal, we first generate pre-training data online with our Label-Efficient Masked Region Transform (LEMaRT) pipeline. Given an image, LEMaRT generates a foreground mask and then applies a set of transformations to perturb various visual attributes, e.g., defocus blur, contrast, saturation, of the region specified by the generated mask. We then pre-train image harmonization models by recovering the original image from the perturbed image. Secondly, we introduce an image harmonization model, namely SwinIH, by retrofitting the Swin Transformer [27] with a combination of local and global self-attention mechanisms. Pre-training SwinIH with LEMaRT results in a new state of the art for image harmonization, while being label-efficient, i.e., consuming less annotated data for fine-tuning than existing methods. Notably, on iHarmony4 dataset [8], SwinIH outperforms the state of the art, i.e., SCS-Co [16] by a margin of 0.4 dB when it is fine-tuned on only 50% of the training data, and by 1.0 dB when it is trained on the full training dataset.
Abstract:We propose to learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules and residual on the residual architecture for image denoising. Our network structure possesses three distinctive features that are important for the noise removal task. Firstly, each unit employs identity mappings as the skip connections and receives pre-activated input to preserve the gradient magnitude propagated in both the forward and backward directions. Secondly, by utilizing dilated kernels for the convolution layers in the residual branch, each neuron in the last convolution layer of each module can observe the full receptive field of the first layer. Lastly, we employ the residual on the residual architecture to ease the propagation of the high-level information. Contrary to current state-of-the-art real denoising networks, we also present a straightforward and single-stage network for real image denoising. The proposed network produces remarkably higher numerical accuracy and better visual image quality than the classical state-of-the-art and CNN algorithms when being evaluated on the three conventional benchmark and three real-world datasets.
Abstract:Traditional approaches for complementary product recommendations rely on behavioral and non-visual data such as customer co-views or co-buys. However, certain domains such as fashion are primarily visual. We propose a framework that harnesses visual cues in an unsupervised manner to learn the distribution of co-occurring complementary items in real world images. Our model learns a non-linear transformation between the two manifolds of source and target complementary item categories (e.g., tops and bottoms in outfits). Given a large dataset of images containing instances of co-occurring object categories, we train a generative transformer network directly on the feature representation space by casting it as an adversarial optimization problem. Such a conditional generative model can produce multiple novel samples of complementary items (in the feature space) for a given query item. The final recommendations are selected from the closest real world examples to the synthesized complementary features. We apply our framework to the task of recommending complementary tops for a given bottom clothing item. The recommendations made by our system are diverse, and are favored by human experts over the baseline approaches.
Abstract:3D pose estimation from a single image is a challenging task in computer vision. We present a weakly supervised approach to estimate 3D pose points, given only 2D pose landmarks. Our method does not require correspondences between 2D and 3D points to build explicit 3D priors. We utilize an adversarial framework to impose a prior on the 3D structure, learned solely from their random 2D projections. Given a set of 2D pose landmarks, the generator network hypothesizes their depths to obtain a 3D skeleton. We propose a novel Random Projection layer, which randomly projects the generated 3D skeleton and sends the resulting 2D pose to the discriminator. The discriminator improves by discriminating between the generated poses and pose samples from a real distribution of 2D poses. Training does not require correspondence between the 2D inputs to either the generator or the discriminator. We apply our approach to the task of 3D human pose estimation. Results on Human3.6M dataset demonstrates that our approach outperforms many previous supervised and weakly supervised approaches.