University of Melbourne
Abstract:In previous works, neural sequence models have been shown to improve significantly if external prior knowledge can be provided, for instance by allowing the model to access the embeddings of explicit features during both training and inference. In this work, we propose a different point of view on how to incorporate prior knowledge in a principled way, using a moment matching framework. In this approach, the standard local cross-entropy training of the sequential model is combined with a moment matching training mode that encourages the equality of the expectations of certain predefined features between the model distribution and the empirical distribution. In particular, we show how to derive unbiased estimates of some stochastic gradients that are central to the training, and compare our framework with a formally related one: policy gradient training in reinforcement learning, pointing out some important differences in terms of the kinds of prior assumptions in both approaches. Our initial results are promising, showing the effectiveness of our proposed framework.
Abstract:We propose a novel decoding approach for neural machine translation (NMT) based on continuous optimisation. We convert decoding - basically a discrete optimization problem - into a continuous optimization problem. The resulting constrained continuous optimisation problem is then tackled using gradient-based methods. Our powerful decoding framework enables decoding intractable models such as the intersection of left-to-right and right-to-left (bidirectional) as well as source-to-target and target-to-source (bilingual) NMT models. Our empirical results show that our decoding framework is effective, and leads to substantial improvements in translations generated from the intersected models where the typical greedy or beam search is not feasible. We also compare our framework against reranking, and analyse its advantages and disadvantages.
Abstract:Neural encoder-decoder models of machine translation have achieved impressive results, rivalling traditional translation models. However their modelling formulation is overly simplistic, and omits several key inductive biases built into traditional models. In this paper we extend the attentional neural translation model to include structural biases from word based alignment models, including positional bias, Markov conditioning, fertility and agreement over translation directions. We show improvements over a baseline attentional model and standard phrase-based model over several language pairs, evaluating on difficult languages in a low resource setting.