Abstract:Open-weight large language models (LLMs) have significantly advanced performance in the Natural Language to SQL (NL2SQL) task. However, their effectiveness diminishes when dealing with large database schemas, as the context length increases. To address this limitation, we present SQLong, a novel and efficient data augmentation framework designed to enhance LLM performance in long-context scenarios for the NL2SQL task. SQLong generates augmented datasets by extending existing database schemas with additional synthetic CREATE TABLE commands and corresponding data rows, sampled from diverse schemas in the training data. This approach effectively simulates long-context scenarios during finetuning and evaluation. Through experiments on the Spider and BIRD datasets, we demonstrate that LLMs finetuned with SQLong-augmented data significantly outperform those trained on standard datasets. These imply SQLong's practical implementation and its impact on improving NL2SQL capabilities in real-world settings with complex database schemas.
Abstract:Research on automatically geolocating social media users has conventionally been based on the text content of posts from a given user or the social network of the user, with very little crossover between the two, and no bench-marking of the two approaches over compara- ble datasets. We bring the two threads of research together in first proposing a text-based method based on adaptive grids, followed by a hybrid network- and text-based method. Evaluating over three Twitter datasets, we show that the empirical difference between text- and network-based methods is not great, and that hybridisation of the two is superior to the component methods, especially in contexts where the user graph is not well connected. We achieve state-of-the-art results on all three datasets.