Abstract:We approach the challenge of addressing semi-supervised domain generalization (SSDG). Specifically, our aim is to obtain a model that learns domain-generalizable features by leveraging a limited subset of labelled data alongside a substantially larger pool of unlabeled data. Existing domain generalization (DG) methods which are unable to exploit unlabeled data perform poorly compared to semi-supervised learning (SSL) methods under SSDG setting. Nevertheless, SSL methods have considerable room for performance improvement when compared to fully-supervised DG training. To tackle this underexplored, yet highly practical problem of SSDG, we make the following core contributions. First, we propose a feature-based conformity technique that matches the posterior distributions from the feature space with the pseudo-label from the model's output space. Second, we develop a semantics alignment loss to learn semantically-compatible representations by regularizing the semantic structure in the feature space. Our method is plug-and-play and can be readily integrated with different SSL-based SSDG baselines without introducing any additional parameters. Extensive experimental results across five challenging DG benchmarks with four strong SSL baselines suggest that our method provides consistent and notable gains in two different SSDG settings.
Abstract:Diabetic retinopathy (DR) is caused by long-standing diabetes and is among the fifth leading cause for visual impairments. The process of early diagnosis and treatments could be helpful in curing the disease, however, the detection procedure is rather challenging and mostly tedious. Therefore, automated diabetic retinopathy classification using deep learning techniques has gained interest in the medical imaging community. Akin to several other real-world applications of deep learning, the typical assumption of i.i.d data is also violated in DR classification that relies on deep learning. Therefore, developing DR classification methods robust to unseen distributions is of great value. In this paper, we study the problem of generalizing a model to unseen distributions or domains (a.k.a domain generalization) in DR classification. To this end, we propose a simple and effective domain generalization (DG) approach that achieves self-distillation in vision transformers (ViT) via a novel prediction softening mechanism. This prediction softening is an adaptive convex combination one-hot labels with the model's own knowledge. We perform extensive experiments on challenging open-source DR classification datasets under both multi-source and single-source DG settings with three different ViT backbones to establish the efficacy and applicability of our approach against competing methods. For the first time, we report the performance of several state-of-the-art DG methods on open-source DR classification datasets after conducting thorough experiments. Finally, our method is also capable of delivering improved calibration performance than other methods, showing its suitability for safety-critical applications, including healthcare. We hope that our contributions would investigate more DG research across the medical imaging community.