Abstract:Many organizations measure treatment effects via an experimentation platform to evaluate the casual effect of product variations prior to full-scale deployment. However, standard experimentation platforms do not perform optimally for end user populations that exhibit heterogeneous treatment effects (HTEs). Here we present a personalized experimentation framework, Personalized Experiments (PEX), which optimizes treatment group assignment at the user level via HTE modeling and sequential decision policy optimization to optimize multiple short-term and long-term outcomes simultaneously. We describe an end-to-end workflow that has proven to be successful in practice and can be readily implemented using open-source software.
Abstract:Large-scale Web-based services present opportunities for improving UI policies based on observed user interactions. We address challenges of learning such policies through model-free offline Reinforcement Learning (RL) with off-policy training. Deployed in a production system for user authentication in a major social network, it significantly improves long-term objectives. We articulate practical challenges, compare several ML techniques, provide insights on training and evaluation of RL models, and discuss generalizations.