Abstract:Vision representation learning, especially self-supervised learning, is pivotal for various vision applications. Ensemble learning has also succeeded in enhancing the performance and robustness of the vision models. However, traditional ensemble strategies are impractical for representation learning, especially self-supervised representation learning that requires large-scale datasets and long schedules. This is because they require k times more training and inference computation costs for an ensemble of k models. Differently, we introduce Multi-Token Enhancing (MTE) that extracts multiple auxiliary tokens simultaneously from a single model to enhance representation learning, while incurring minimal additional training costs and no additional inference costs. These auxiliary tokens, including auxiliary CLS tokens and adaptively pooled tokens, capture complementary information due to their differences. Meanwhile, to address the increase in inference costs, we distill the knowledge acquired by the auxiliary tokens into a global token during pre-training. Consequently, we can discard the auxiliary tokens during inference without incurring additional costs. Our MTE is compatible with various self-supervised loss functions and architectures, consistently improving performances across different downstream tasks. Our source code will be made publicly available.
Abstract:Recent progress in the text-driven 3D stylization of a single object has been considerably promoted by CLIP-based methods. However, the stylization of multi-object 3D scenes is still impeded in that the image-text pairs used for pre-training CLIP mostly consist of an object. Meanwhile, the local details of multiple objects may be susceptible to omission due to the existing supervision manner primarily relying on coarse-grained contrast of image-text pairs. To overcome these challenges, we present a novel framework, dubbed TeMO, to parse multi-object 3D scenes and edit their styles under the contrast supervision at multiple levels. We first propose a Decoupled Graph Attention (DGA) module to distinguishably reinforce the features of 3D surface points. Particularly, a cross-modal graph is constructed to align the object points accurately and noun phrases decoupled from the 3D mesh and textual description. Then, we develop a Cross-Grained Contrast (CGC) supervision system, where a fine-grained loss between the words in the textual description and the randomly rendered images are constructed to complement the coarse-grained loss. Extensive experiments show that our method can synthesize high-quality stylized content and outperform the existing methods over a wide range of multi-object 3D meshes. Our code and results will be made publicly available
Abstract:Incorporating heterogeneous representations from different architectures has facilitated various vision tasks, e.g., some hybrid networks combine transformers and convolutions. However, complementarity between such heterogeneous architectures has not been well exploited in self-supervised learning. Thus, we propose Heterogeneous Self-Supervised Learning (HSSL), which enforces a base model to learn from an auxiliary head whose architecture is heterogeneous from the base model. In this process, HSSL endows the base model with new characteristics in a representation learning way without structural changes. To comprehensively understand the HSSL, we conduct experiments on various heterogeneous pairs containing a base model and an auxiliary head. We discover that the representation quality of the base model moves up as their architecture discrepancy grows. This observation motivates us to propose a search strategy that quickly determines the most suitable auxiliary head for a specific base model to learn and several simple but effective methods to enlarge the model discrepancy. The HSSL is compatible with various self-supervised methods, achieving superior performances on various downstream tasks, including image classification, semantic segmentation, instance segmentation, and object detection. Our source code will be made publicly available.