Abstract:In this paper, we present the results of the SemEval-2020 Task 9 on Sentiment Analysis of Code-Mixed Tweets (SentiMix 2020). We also release and describe our Hinglish (Hindi-English) and Spanglish (Spanish-English) corpora annotated with word-level language identification and sentence-level sentiment labels. These corpora are comprised of 20K and 19K examples, respectively. The sentiment labels are - Positive, Negative, and Neutral. SentiMix attracted 89 submissions in total including 61 teams that participated in the Hinglish contest and 28 submitted systems to the Spanglish competition. The best performance achieved was 75.0% F1 score for Hinglish and 80.6% F1 for Spanglish. We observe that BERT-like models and ensemble methods are the most common and successful approaches among the participants.
Abstract:The paper discusses how compositional semantics is implemented in the Verbmobil speech-to-speech translation system using LUD, a description language for underspecified discourse representation structures. The description language and its formal interpretation in DRT are described as well as its implementation together with the architecture of the system's entire syntactic-semantic processing module. We show that a linguistically sound theory and formalism can be properly implemented in a system with (near) real-time requirements.