Abstract:Pre-trained vision-language models (VLMs) like CLIP have demonstrated impressive zero-shot performance on a wide range of downstream computer vision tasks. However, there still exists a considerable performance gap between these models and a supervised deep model trained on a downstream dataset. To bridge this gap, we propose a novel active learning (AL) framework that enhances the zero-shot classification performance of VLMs by selecting only a few informative samples from the unlabeled data for annotation during training. To achieve this, our approach first calibrates the predicted entropy of VLMs and then utilizes a combination of self-uncertainty and neighbor-aware uncertainty to calculate a reliable uncertainty measure for active sample selection. Our extensive experiments show that the proposed approach outperforms existing AL approaches on several image classification datasets, and significantly enhances the zero-shot performance of VLMs.
Abstract:One of the challenges for neural networks in real-life applications is the overconfident errors these models make when the data is not from the original training distribution. Addressing this issue is known as Out-of-Distribution (OOD) detection. Many state-of-the-art OOD methods employ an auxiliary dataset as a surrogate for OOD data during training to achieve improved performance. However, these methods fail to fully exploit the local information embedded in the auxiliary dataset. In this work, we propose the idea of leveraging the information embedded in the gradient of the loss function during training to enable the network to not only learn a desired OOD score for each sample but also to exhibit similar behavior in a local neighborhood around each sample. We also develop a novel energy-based sampling method to allow the network to be exposed to more informative OOD samples during the training phase. This is especially important when the auxiliary dataset is large. We demonstrate the effectiveness of our method through extensive experiments on several OOD benchmarks, improving the existing state-of-the-art FPR95 by 4% on our ImageNet experiment. We further provide a theoretical analysis through the lens of certified robustness and Lipschitz analysis to showcase the theoretical foundation of our work. We will publicly release our code after the review process.
Abstract:Active Learning (AL) aims to enhance the performance of deep models by selecting the most informative samples for annotation from a pool of unlabeled data. Despite impressive performance in closed-set settings, most AL methods fail in real-world scenarios where the unlabeled data contains unknown categories. Recently, a few studies have attempted to tackle the AL problem for the open-set setting. However, these methods focus more on selecting known samples and do not efficiently utilize unknown samples obtained during AL rounds. In this work, we propose an Entropic Open-set AL (EOAL) framework which leverages both known and unknown distributions effectively to select informative samples during AL rounds. Specifically, our approach employs two different entropy scores. One measures the uncertainty of a sample with respect to the known-class distributions. The other measures the uncertainty of the sample with respect to the unknown-class distributions. By utilizing these two entropy scores we effectively separate the known and unknown samples from the unlabeled data resulting in better sampling. Through extensive experiments, we show that the proposed method outperforms existing state-of-the-art methods on CIFAR-10, CIFAR-100, and TinyImageNet datasets. Code is available at \url{https://github.com/bardisafa/EOAL}.
Abstract:Automatic Target Recognition (ATR) is a category of computer vision algorithms which attempts to recognize targets on data obtained from different sensors. ATR algorithms are extensively used in real-world scenarios such as military and surveillance applications. Existing ATR algorithms are developed for traditional closed-set methods where training and testing have the same class distribution. Thus, these algorithms have not been robust to unknown classes not seen during the training phase, limiting their utility in real-world applications. To this end, we propose an Open-set Automatic Target Recognition framework where we enable open-set recognition capability for ATR algorithms. In addition, we introduce a plugin Category-aware Binary Classifier (CBC) module to effectively tackle unknown classes seen during inference. The proposed CBC module can be easily integrated with any existing ATR algorithms and can be trained in an end-to-end manner. Experimental results show that the proposed approach outperforms many open-set methods on the DSIAC and CIFAR-10 datasets. To the best of our knowledge, this is the first work to address the open-set classification problem for ATR algorithms. Source code is available at: https://github.com/bardisafa/Open-set-ATR.