Abstract:We introduce a method to synthesize animator guided human motion across 3D scenes. Given a set of sparse (3 or 4) joint locations (such as the location of a person's hand and two feet) and a seed motion sequence in a 3D scene, our method generates a plausible motion sequence starting from the seed motion while satisfying the constraints imposed by the provided keypoints. We decompose the continual motion synthesis problem into walking along paths and transitioning in and out of the actions specified by the keypoints, which enables long generation of motions that satisfy scene constraints without explicitly incorporating scene information. Our method is trained only using scene agnostic mocap data. As a result, our approach is deployable across 3D scenes with various geometries. For achieving plausible continual motion synthesis without drift, our key contribution is to generate motion in a goal-centric canonical coordinate frame where the next immediate target is situated at the origin. Our model can generate long sequences of diverse actions such as grabbing, sitting and leaning chained together in arbitrary order, demonstrated on scenes of varying geometry: HPS, Replica, Matterport, ScanNet and scenes represented using NeRFs. Several experiments demonstrate that our method outperforms existing methods that navigate paths in 3D scenes.
Abstract:We introduce (HPS) Human POSEitioning System, a method to recover the full 3D pose of a human registered with a 3D scan of the surrounding environment using wearable sensors. Using IMUs attached at the body limbs and a head mounted camera looking outwards, HPS fuses camera based self-localization with IMU-based human body tracking. The former provides drift-free but noisy position and orientation estimates while the latter is accurate in the short-term but subject to drift over longer periods of time. We show that our optimization-based integration exploits the benefits of the two, resulting in pose accuracy free of drift. Furthermore, we integrate 3D scene constraints into our optimization, such as foot contact with the ground, resulting in physically plausible motion. HPS complements more common third-person-based 3D pose estimation methods. It allows capturing larger recording volumes and longer periods of motion, and could be used for VR/AR applications where humans interact with the scene without requiring direct line of sight with an external camera, or to train agents that navigate and interact with the environment based on first-person visual input, like real humans. With HPS, we recorded a dataset of humans interacting with large 3D scenes (300-1000 sq.m) consisting of 7 subjects and more than 3 hours of diverse motion. The dataset, code and video will be available on the project page: http://virtualhumans.mpi-inf.mpg.de/hps/ .
Abstract:In this work we target a learnable output representation that allows continuous, high resolution outputs of arbitrary shape. Recent works represent 3D surfaces implicitly with a Neural Network, thereby breaking previous barriers in resolution, and ability to represent diverse topologies. However, neural implicit representations are limited to closed surfaces, which divide the space into inside and outside. Many real world objects such as walls of a scene scanned by a sensor, clothing, or a car with inner structures are not closed. This constitutes a significant barrier, in terms of data pre-processing (objects need to be artificially closed creating artifacts), and the ability to output open surfaces. In this work, we propose Neural Distance Fields (NDF), a neural network based model which predicts the unsigned distance field for arbitrary 3D shapes given sparse point clouds. NDF represent surfaces at high resolutions as prior implicit models, but do not require closed surface data, and significantly broaden the class of representable shapes in the output. NDF allow to extract the surface as very dense point clouds and as meshes. We also show that NDF allow for surface normal calculation and can be rendered using a slight modification of sphere tracing. We find NDF can be used for multi-target regression (multiple outputs for one input) with techniques that have been exclusively used for rendering in graphics. Experiments on ShapeNet show that NDF, while simple, is the state-of-the art, and allows to reconstruct shapes with inner structures, such as the chairs inside a bus. Notably, we show that NDF are not restricted to 3D shapes, and can approximate more general open surfaces such as curves, manifolds, and functions. Code is available for research at https://virtualhumans.mpi-inf.mpg.de/ndf/.
Abstract:In this paper, we present a simple yet effective method to automatically transfer textures of clothing images (front and back) to 3D garments worn on top SMPL, in real time. We first automatically compute training pairs of images with aligned 3D garments using a custom non-rigid 3D to 2D registration method, which is accurate but slow. Using these pairs, we learn a mapping from pixels to the 3D garment surface. Our idea is to learn dense correspondences from garment image silhouettes to a 2D-UV map of a 3D garment surface using shape information alone, completely ignoring texture, which allows us to generalize to the wide range of web images. Several experiments demonstrate that our model is more accurate than widely used baselines such as thin-plate-spline warping and image-to-image translation networks while being orders of magnitude faster. Our model opens the door for applications such as virtual try-on, and allows for generation of 3D humans with varied textures which is necessary for learning.