Abstract:Sparse and patch adversarial attacks were previously shown to be applicable in realistic settings and are considered a security risk to autonomous systems. Sparse adversarial perturbations constitute a setting in which the adversarial perturbations are limited to affecting a relatively small number of points in the input. Patch adversarial attacks denote the setting where the sparse attacks are limited to a given structure, i.e., sparse patches with a given shape and number. However, previous patch adversarial attacks do not simultaneously optimize multiple patches' locations and perturbations. This work suggests a novel approach for sparse patches adversarial attacks via point-wise trimming dense adversarial perturbations. Our approach enables simultaneous optimization of multiple sparse patches' locations and perturbations for any given number and shape. Moreover, our approach is also applicable for standard sparse adversarial attacks, where we show that it significantly improves the state-of-the-art over multiple extensive settings. A reference implementation of the proposed method and the reported experiments is provided at \url{https://github.com/yanemcovsky/SparsePatches.git}
Abstract:The widely used ReLU is favored for its hardware efficiency, {as the implementation at inference is a one bit sign case,} yet suffers from issues such as the ``dying ReLU'' problem, where during training, neurons fail to activate and constantly remain at zero, as highlighted by Lu et al. Traditional approaches to mitigate this issue often introduce more complex and less hardware-friendly activation functions. In this work, we propose a Hysteresis Rectified Linear Unit (HeLU), an efficient activation function designed to address the ``dying ReLU'' problem with minimal complexity. Unlike traditional activation functions with fixed thresholds for training and inference, HeLU employs a variable threshold that refines the backpropagation. This refined mechanism allows simpler activation functions to achieve competitive performance comparable to their more complex counterparts without introducing unnecessary complexity or requiring inductive biases. Empirical evaluations demonstrate that HeLU enhances model generalization across diverse datasets, offering a promising solution for efficient and effective inference suitable for a wide range of neural network architectures.
Abstract:Quantized neural networks are well known for reducing latency, power consumption, and model size without significant degradation in accuracy, making them highly applicable for systems with limited resources and low power requirements. Mixed precision quantization offers better utilization of customized hardware that supports arithmetic operations at different bitwidths. Existing mixed-precision schemes rely on having a high exploration space, resulting in a large carbon footprint. In addition, these bit allocation strategies mostly induce constraints on the model size rather than utilizing the performance of neural network deployment on specific hardware. Our work proposes Fast-Bit Allocation for Mixed-Precision Quantization (FBM), which finds an optimal bitwidth allocation by measuring desired behaviors through a simulation of a specific device, or even on a physical one. While dynamic transitions of bit allocation in mixed precision quantization with ultra-low bitwidth are known to suffer from performance degradation, we present a fast recovery solution from such transitions. A comprehensive evaluation of the proposed method on CIFAR-10 and ImageNet demonstrates our method's superiority over current state-of-the-art schemes in terms of the trade-off between neural network accuracy and hardware efficiency. Our source code, experimental settings and quantized models are available at https://github.com/RamorayDrake/FBM/
Abstract:Binary Neural Networks (BNNs) are an extremely promising method to reduce deep neural networks' complexity and power consumption massively. Binarization techniques, however, suffer from ineligible performance degradation compared to their full-precision counterparts. Prior work mainly focused on strategies for sign function approximation during forward and backward phases to reduce the quantization error during the binarization process. In this work, we propose a Bi-Modal Distributed binarization method (\methodname{}). That imposes bi-modal distribution of the network weights by kurtosis regularization. The proposed method consists of a training scheme that we call Weight Distribution Mimicking (WDM), which efficiently imitates the full-precision network weight distribution to their binary counterpart. Preserving this distribution during binarization-aware training creates robust and informative binary feature maps and significantly reduces the generalization error of the BNN. Extensive evaluations on CIFAR-10 and ImageNet demonstrate the superiority of our method over current state-of-the-art schemes. Our source code, experimental settings, training logs, and binary models are available at \url{https://github.com/BlueAnon/BD-BNN}.
Abstract:Graph isomorphism testing is usually approached via the comparison of graph invariants. Two popular alternatives that offer a good trade-off between expressive power and computational efficiency are combinatorial (i.e., obtained via the Weisfeiler-Leman (WL) test) and spectral invariants. While the exact power of the latter is still an open question, the former is regularly criticized for its limited power, when a standard configuration of uniform pre-coloring is used. This drawback hinders the applicability of Message Passing Graph Neural Networks (MPGNNs), whose expressive power is upper bounded by the WL test. Relaxing the assumption of uniform pre-coloring, we show that one can increase the expressive power of the WL test ad infinitum. Following that, we propose an efficient pre-coloring based on spectral features that provably increase the expressive power of the vanilla WL test. The above claims are accompanied by extensive synthetic and real data experiments. The code to reproduce our experiments is available at https://github.com/TPFI22/Spectral-and-Combinatorial
Abstract:Despite their growing popularity, graph neural networks (GNNs) still have multiple unsolved problems, including finding more expressive aggregation methods, propagation of information to distant nodes, and training on large-scale graphs. Understanding and solving such problems require developing analytic tools and techniques. In this work, we propose the notion of recoverability, which is tightly related to information aggregation in GNNs, and based on this concept, develop the method for GNN embedding analysis. We define recoverability theoretically and propose a method for its efficient empirical estimation. We demonstrate, through extensive experimental results on various datasets and different GNN architectures, that estimated recoverability correlates with aggregation method expressivity and graph sparsification quality. Therefore, we believe that the proposed method could provide an essential tool for understanding the roots of the aforementioned problems, and potentially lead to a GNN design that overcomes them. The code to reproduce our experiments is available at https://github.com/Anonymous1252022/Recoverability
Abstract:The success of learning with noisy labels (LNL) methods relies heavily on the success of a warm-up stage where standard supervised training is performed using the full (noisy) training set. In this paper, we identify a "warm-up obstacle": the inability of standard warm-up stages to train high quality feature extractors and avert memorization of noisy labels. We propose "Contrast to Divide" (C2D), a simple framework that solves this problem by pre-training the feature extractor in a self-supervised fashion. Using self-supervised pre-training boosts the performance of existing LNL approaches by drastically reducing the warm-up stage's susceptibility to noise level, shortening its duration, and increasing extracted feature quality. C2D works out of the box with existing methods and demonstrates markedly improved performance, especially in the high noise regime, where we get a boost of more than 27% for CIFAR-100 with 90% noise over the previous state of the art. In real-life noise settings, C2D trained on mini-WebVision outperforms previous works both in WebVision and ImageNet validation sets by 3% top-1 accuracy. We perform an in-depth analysis of the framework, including investigating the performance of different pre-training approaches and estimating the effective upper bound of the LNL performance with semi-supervised learning. Code for reproducing our experiments is available at https://github.com/ContrastToDivide/C2D
Abstract:Unsupervised learning has always been appealing to machine learning researchers and practitioners, allowing them to avoid an expensive and complicated process of labeling the data. However, unsupervised learning of complex data is challenging, and even the best approaches show much weaker performance than their supervised counterparts. Self-supervised deep learning has become a strong instrument for representation learning in computer vision. However, those methods have not been evaluated in a fully unsupervised setting. In this paper, we propose a simple scheme for unsupervised classification based on self-supervised representations. We evaluate the proposed approach with several recent self-supervised methods showing that it achieves competitive results for ImageNet classification (39% accuracy on ImageNet with 1000 clusters and 46% with overclustering). We suggest adding the unsupervised evaluation to a set of standard benchmarks for self-supervised learning. The code is available at https://github.com/Randl/kmeans_selfsuper
Abstract:Convolutional Neural Networks (CNNs) have become common in many fields including computer vision, speech recognition, and natural language processing. Although CNN hardware accelerators are already included as part of many SoC architectures, the task of achieving high accuracy on resource-restricted devices is still considered challenging, mainly due to the vast number of design parameters that need to be balanced to achieve an efficient solution. Quantization techniques, when applied to the network parameters, lead to a reduction of power and area and may also change the ratio between communication and computation. As a result, some algorithmic solutions may suffer from lack of memory bandwidth or computational resources and fail to achieve the expected performance due to hardware constraints. Thus, the system designer and the micro-architect need to understand at early development stages the impact of their high-level decisions (e.g., the architecture of the CNN and the amount of bits used to represent its parameters) on the final product (e.g., the expected power saving, area, and accuracy). Unfortunately, existing tools fall short of supporting such decisions. This paper introduces a hardware-aware complexity metric that aims to assist the system designer of the neural network architectures, through the entire project lifetime (especially at its early stages) by predicting the impact of architectural and micro-architectural decisions on the final product. We demonstrate how the proposed metric can help evaluate different design alternatives of neural network models on resource-restricted devices such as real-time embedded systems, and to avoid making design mistakes at early stages.
Abstract:Even though deep learning has shown unmatched performance on various tasks, neural networks have been shown to be vulnerable to small adversarial perturbations of the input that lead to significant performance degradation. In this work we extend the idea of adding white Gaussian noise to the network weights and activations during adversarial training (PNI) to the injection of colored noise for defense against common white-box and black-box attacks. We show that our approach outperforms PNI and various previous approaches in terms of adversarial accuracy on CIFAR-10 and CIFAR-100 datasets. In addition, we provide an extensive ablation study of the proposed method justifying the chosen configurations.