Abstract:Accurate detection of locomotion transitions, such as walk to sit, walk to stair ascent, and descent, is crucial to effectively control robotic assistive devices, such as lower-limb exoskeletons, as each locomotion mode requires specific assistance. Variability in collected sensor data introduced by user- or system-specific characteristics makes it challenging to maintain high transition detection accuracy while avoiding latency using non-adaptive classification models. In this study, we identified key factors influencing transition detection performance, including variations in user behavior, and different mechanical designs of the exoskeletons. To boost the transition detection accuracy, we introduced two methods for adapting a finite-state machine classifier to system- and user-specific variability: a Statistics-Based approach and Bayesian Optimization. Our experimental results demonstrate that both methods remarkably improve transition detection accuracy across diverse users, achieving up to an 80% increase in certain scenarios compared to the non-personalized threshold method. These findings emphasize the importance of personalization in adaptive control systems, underscoring the potential for enhanced user experience and effectiveness in assistive devices. By incorporating subject- and system-specific data into the model training process, our approach offers a precise and reliable solution for detecting locomotion transitions, catering to individual user needs, and ultimately improving the performance of assistive devices.
Abstract:We present a framework for learning a single policy capable of producing all quadruped gaits and transitions. The framework consists of a policy trained with deep reinforcement learning (DRL) to modulate the parameters of a system of abstract oscillators (i.e. Central Pattern Generator), whose output is mapped to joint commands through a pattern formation layer that sets the gait style, i.e. body height, swing foot ground clearance height, and foot offset. Different gaits are formed by changing the coupling between different oscillators, which can be instantaneously selected at any velocity by a user. With this framework, we systematically investigate which gait should be used at which velocity, and when gait transitions should occur from a Cost of Transport (COT), i.e. energy-efficiency, point of view. Additionally, we note how gait style changes as a function of locomotion speed for each gait to keep the most energy-efficient locomotion. While the currently most popular gait (trot) does not result in the lowest COT, we find that considering different co-dependent metrics such as mean base velocity and joint acceleration result in different `optimal' gaits than those that minimize COT. We deploy our controller in various hardware experiments, showing all 9 typical quadruped animal gaits, and demonstrate generalizability to unseen gaits during training, and robustness to leg failures. Video results can be found at https://youtu.be/OLoWSX_R868.
Abstract:Typical legged locomotion controllers are designed or trained offline. This is in contrast to many animals, which are able to locomote at birth, and rapidly improve their locomotion skills with few real-world interactions. Such motor control is possible through oscillatory neural networks located in the spinal cord of vertebrates, known as Central Pattern Generators (CPGs). Models of the CPG have been widely used to generate locomotion skills in robotics, but can require extensive hand-tuning or offline optimization of inter-connected parameters with genetic algorithms. In this paper, we present a framework for the \textit{online} optimization of the CPG parameters through Bayesian Optimization. We show that our framework can rapidly optimize and adapt to varying velocity commands and changes in the terrain, for example to varying coefficients of friction, terrain slope angles, and added mass payloads placed on the robot. We study the effects of sensory feedback on the CPG, and find that both force feedback in the phase equations, as well as posture control (Virtual Model Control) are both beneficial for robot stability and energy efficiency. In hardware experiments on the Unitree Go1, we show rapid optimization (in under 3 minutes) and adaptation of energy-efficient gaits to varying target velocities in a variety of scenarios: varying coefficients of friction, added payloads up to 15 kg, and variable slopes up to 10 degrees. See demo at: https://youtu.be/4qq5leCI2AI
Abstract:This paper presents a framework for dynamic object catching using a quadruped robot's front legs while it stands on its rear legs. The system integrates computer vision, trajectory prediction, and leg control to enable the quadruped to visually detect, track, and successfully catch a thrown object using an onboard camera. Leveraging a fine-tuned YOLOv8 model for object detection and a regression-based trajectory prediction module, the quadruped adapts its front leg positions iteratively to anticipate and intercept the object. The catching maneuver involves identifying the optimal catching position, controlling the front legs with Cartesian PD control, and closing the legs together at the right moment. We propose and validate three different methods for selecting the optimal catching position: 1) intersecting the predicted trajectory with a vertical plane, 2) selecting the point on the predicted trajectory with the minimal distance to the center of the robot's legs in their nominal position, and 3) selecting the point on the predicted trajectory with the highest likelihood on a Gaussian Mixture Model (GMM) modelling the robot's reachable space. Experimental results demonstrate robust catching capabilities across various scenarios, with the GMM method achieving the best performance, leading to an 80% catching success rate. A video demonstration of the system in action can be found at https://youtu.be/sm7RdxRfIYg .
Abstract:Quadruped robots are showing impressive abilities to navigate the real world. If they are to become more integrated into society, social trust in interactions with humans will become increasingly important. Additionally, robots will need to be adaptable to different humans based on individual preferences. In this work, we study the social interaction task of learning optimal handshakes for quadruped robots based on user preferences. While maintaining balance on three legs, we parameterize handshakes with a Central Pattern Generator consisting of an amplitude, frequency, stiffness, and duration. Through 10 binary choices between handshakes, we learn a belief model to fit individual preferences for 25 different subjects. Our results show that this is an effective strategy, with 76% of users feeling happy with their identified optimal handshake parameters, and 20% feeling neutral. Moreover, compared with random and test handshakes, the optimized handshakes have significantly decreased errors in amplitude and frequency, lower Dynamic Time Warping scores, and improved energy efficiency, all of which indicate robot synchronization to the user's preferences. Video results can be found at https://youtu.be/elvPv8mq1KM .
Abstract:Animals possess a remarkable ability to navigate challenging terrains, achieved through the interplay of various pathways between the brain, central pattern generators (CPGs) in the spinal cord, and musculoskeletal system. Traditional bioinspired control frameworks often rely on a singular control policy that models both higher (supraspinal) and spinal cord functions. In this work, we build upon our previous research by introducing two distinct neural networks: one tasked with modulating the frequency and amplitude of CPGs to generate the basic locomotor rhythm (referred to as the spinal policy, SCP), and the other responsible for receiving environmental perception data and directly modulating the rhythmic output from the SCP to execute precise movements on challenging terrains (referred to as the descending modulation policy). This division of labor more closely mimics the hierarchical locomotor control systems observed in legged animals, thereby enhancing the robot's ability to navigate various uneven surfaces, including steps, high obstacles, and terrains with gaps. Additionally, we investigate the impact of sensorimotor delays within our framework, validating several biological assumptions about animal locomotion systems. Specifically, we demonstrate that spinal circuits play a crucial role in generating the basic locomotor rhythm, while descending pathways are essential for enabling appropriate gait modifications to accommodate uneven terrain. Notably, our findings also reveal that the multi-layered control inherent in animals exhibits remarkable robustness against time delays. Through these investigations, this paper contributes to a deeper understanding of the fundamental principles of interplay between spinal and supraspinal mechanisms in biological locomotion. It also supports the development of locomotion controllers in parallel to biological structures which are ...
Abstract:Legged robots are becoming increasingly agile in exhibiting dynamic behaviors such as running and jumping. Usually, such behaviors are either optimized and engineered offline (i.e. the behavior is designed for before it is needed), either through model-based trajectory optimization, or through deep learning-based methods involving millions of timesteps of simulation interactions. Notably, such offline-designed locomotion controllers cannot perfectly model the true dynamics of the system, such as the motor dynamics. In contrast, in this paper, we consider a quadruped jumping task that we rapidly optimize online. We design foot force profiles parameterized by only a few parameters which we optimize for directly on hardware with Bayesian Optimization. The force profiles are tracked at the joint level, and added to Cartesian PD impedance control and Virtual Model Control to stabilize the jumping motions. After optimization, which takes only a handful of jumps, we show that this control architecture is capable of diverse and omnidirectional jumps including forward, lateral, and twist (turning) jumps, even on uneven terrain, enabling the Unitree Go1 quadruped to jump 0.5 m high, 0.5 m forward, and jump-turn over 2 rad. Video results can be found at https://youtu.be/SvfVNQ90k_w.
Abstract:Balance loss is a significant challenge in lower-limb exoskeleton applications, as it can lead to potential falls, thereby impacting user safety and confidence. We introduce a control framework for omnidirectional recovery step planning by online optimization of step duration and position in response to external forces. We map the step duration and position to a human-like foot trajectory, which is then translated into joint trajectories using inverse kinematics. These trajectories are executed via an impedance controller, promoting cooperation between the exoskeleton and the user. Moreover, our framework is based on the concept of the divergent component of motion, also known as the Extrapolated Center of Mass, which has been established as a consistent dynamic for describing human movement. This real-time online optimization framework enhances the adaptability of exoskeleton users under unforeseen forces thereby improving the overall user stability and safety. To validate the effectiveness of our approach, simulations, and experiments were conducted. Our push recovery experiments employing the exoskeleton in zero-torque mode (without assistance) exhibit an alignment with the exoskeleton's recovery assistance mode, that shows the consistency of the control framework with human intention. To the best of our knowledge, this is the first cooperative push recovery framework for the lower-limb human exoskeleton that relies on the simultaneous adaptation of intra-stride parameters in both frontal and sagittal directions. The proposed control scheme has been validated with human subject experiments.
Abstract:Learning a locomotion policy for quadruped robots has traditionally been constrained to specific robot morphology, mass, and size. The learning process must usually be repeated for every new robot, where hyperparameters and reward function weights must be re-tuned to maximize performance for each new system. Alternatively, attempting to train a single policy to accommodate different robot sizes, while maintaining the same degrees of freedom (DoF) and morphology, requires either complex learning frameworks, or mass, inertia, and dimension randomization, which leads to prolonged training periods. In our study, we show that drawing inspiration from animal motor control allows us to effectively train a single locomotion policy capable of controlling a diverse range of quadruped robots. These differences encompass a variable number of DoFs, (i.e. 12 or 16 joints), three distinct morphologies, a broad mass range spanning from 2 kg to 200 kg, and nominal standing heights ranging from 16 cm to 100 cm. Our policy modulates a representation of the Central Pattern Generator (CPG) in the spinal cord, effectively coordinating both frequencies and amplitudes of the CPG to produce rhythmic output (Rhythm Generation), which is then mapped to a Pattern Formation (PF) layer. Across different robots, the only varying component is the PF layer, which adjusts the scaling parameters for the stride height and length. Subsequently, we evaluate the sim-to-real transfer by testing the single policy on both the Unitree Go1 and A1 robots. Remarkably, we observe robust performance, even when adding a 15 kg load, equivalent to 125% of the A1 robot's nominal mass.
Abstract:Assistive devices, such as exoskeletons and prostheses, have revolutionized the field of rehabilitation and mobility assistance. Efficiently detecting transitions between different activities, such as walking, stair ascending and descending, and sitting, is crucial for ensuring adaptive control and enhancing user experience. We here present an approach for real-time transition detection, aimed at optimizing the processing-time performance. By establishing activity-specific threshold values through trained machine learning models, we effectively distinguish motion patterns and we identify transition moments between locomotion modes. This threshold-based method improves real-time embedded processing time performance by up to 11 times compared to machine learning approaches. The efficacy of the developed finite-state machine is validated using data collected from three different measurement systems. Moreover, experiments with healthy participants were conducted on an active pelvis orthosis to validate the robustness and reliability of our approach. The proposed algorithm achieved high accuracy in detecting transitions between activities. These promising results show the robustness and reliability of the method, reinforcing its potential for integration into practical applications.