Abstract:Explaining Graph Neural Networks predictions to end users of AI applications in easily understandable terms remains an unsolved problem. In particular, we do not have well developed methods for automatically evaluating explanations, in ways that are closer to how users consume those explanations. Based on recent application trends and our own experiences in real world problems, we propose automatic evaluation approaches for GNN Explanations.
Abstract:Ontology Alignment is an important research problem that finds application in various fields such as data integration, data transfer, data preparation etc. State-of-the-art (SOTA) architectures in Ontology Alignment typically use naive domain-dependent approaches with handcrafted rules and manually assigned values, making them unscalable and inefficient. Deep Learning approaches for ontology alignment use domain-specific architectures that are not only in-extensible to other datasets and domains, but also typically perform worse than rule-based approaches due to various limitations including over-fitting of models, sparsity of datasets etc. In this work, we propose VeeAlign, a Deep Learning based model that uses a dual-attention mechanism to compute the contextualized representation of a concept in order to learn alignments. By doing so, not only does our approach exploit both syntactic and semantic structure of ontologies, it is also, by design, flexible and scalable to different domains with minimal effort. We validate our approach on various datasets from different domains and in multilingual settings, and show its superior performance over SOTA methods.
Abstract:Regulatory compliance is an organization's adherence to laws, regulations, guidelines and specifications relevant to its business. Compliance officers responsible for maintaining adherence constantly struggle to keep up with the large amount of changes in regulatory requirements. Keeping up with the changes entail two main tasks: fetching the regulatory announcements that actually contain changes of interest, and incorporating those changes in the business process. In this paper we focus on the first task, and present a Compliance Change Tracking System, that gathers regulatory announcements from government sites, news sites, email subscriptions; classifies their importance i.e Actionability through a hierarchical classifier, and business process applicability through a multi-class classifier. For these classifiers, we experiment with several approaches such as vanilla classification methods (e.g. Naive Bayes, logistic regression etc.), hierarchical classification methods, rule based approach, hybrid approach with various preprocessing and feature selection methods; and show that despite the richness of other models, a simple hierarchical classification with bag-of-words features works the best for Actionability classifier and multi-class logistic regression works the best for Applicability classifier. The system has been deployed in global delivery centers, and has received positive feedback from payroll compliance officers.
Abstract:Paraphrase generation is an important problem in NLP, especially in question answering, information retrieval, information extraction, conversation systems, to name a few. In this paper, we address the problem of generating paraphrases automatically. Our proposed method is based on a combination of deep generative models (VAE) with sequence-to-sequence models (LSTM) to generate paraphrases, given an input sentence. Traditional VAEs when combined with recurrent neural networks can generate free text but they are not suitable for paraphrase generation for a given sentence. We address this problem by conditioning the both, encoder and decoder sides of VAE, on the original sentence, so that it can generate the given sentence's paraphrases. Unlike most existing models, our model is simple, modular and can generate multiple paraphrases, for a given sentence. Quantitative evaluation of the proposed method on a benchmark paraphrase dataset demonstrates its efficacy, and its performance improvement over the state-of-the-art methods by a significant margin, whereas qualitative human evaluation indicate that the generated paraphrases are well-formed, grammatically correct, and are relevant to the input sentence. Furthermore, we evaluate our method on a newly released question paraphrase dataset, and establish a new baseline for future research.
Abstract:Dialogue Act recognition associate dialogue acts (i.e., semantic labels) to utterances in a conversation. The problem of associating semantic labels to utterances can be treated as a sequence labeling problem. In this work, we build a hierarchical recurrent neural network using bidirectional LSTM as a base unit and the conditional random field (CRF) as the top layer to classify each utterance into its corresponding dialogue act. The hierarchical network learns representations at multiple levels, i.e., word level, utterance level, and conversation level. The conversation level representations are input to the CRF layer, which takes into account not only all previous utterances but also their dialogue acts, thus modeling the dependency among both, labels and utterances, an important consideration of natural dialogue. We validate our approach on two different benchmark data sets, Switchboard and Meeting Recorder Dialogue Act, and show performance improvement over the state-of-the-art methods by $2.2\%$ and $4.1\%$ absolute points, respectively. It is worth noting that the inter-annotator agreement on Switchboard data set is $84\%$, and our method is able to achieve the accuracy of about $79\%$ despite being trained on the noisy data.
Abstract:In this paper, we present a learning method for sequence labeling tasks in which each example sequence has multiple label sequences. Our method learns multiple models, one model for each label sequence. Each model computes the joint probability of all label sequences given the example sequence. Although each model considers all label sequences, its primary focus is only one label sequence, and therefore, each model becomes a task-specific model, for the task belonging to that primary label. Such multiple models are learned {\it simultaneously} by facilitating the learning transfer among models through {\it explicit parameter sharing}. We experiment the proposed method on two applications and show that our method significantly outperforms the state-of-the-art method.
Abstract:In Bayesian machine learning, conjugate priors are popular, mostly due to mathematical convenience. In this paper, we show that there are deeper reasons for choosing a conjugate prior. Specifically, we formulate the conjugate prior in the form of Bregman divergence and show that it is the inherent geometry of conjugate priors that makes them appropriate and intuitive. This geometric interpretation allows one to view the hyperparameters of conjugate priors as the {\it effective} sample points, thus providing additional intuition. We use this geometric understanding of conjugate priors to derive the hyperparameters and expression of the prior used to couple the generative and discriminative components of a hybrid model for semi-supervised learning.
Abstract:In this paper, we propose a unified algorithmic framework for solving many known variants of \mds. Our algorithm is a simple iterative scheme with guaranteed convergence, and is \emph{modular}; by changing the internals of a single subroutine in the algorithm, we can switch cost functions and target spaces easily. In addition to the formal guarantees of convergence, our algorithms are accurate; in most cases, they converge to better quality solutions than existing methods, in comparable time. We expect that this framework will be useful for a number of \mds variants that have not yet been studied. Our framework extends to embedding high-dimensional points lying on a sphere to points on a lower dimensional sphere, preserving geodesic distances. As a compliment to this result, we also extend the Johnson-Lindenstrauss Lemma to this spherical setting, where projecting to a random $O((1/\eps^2) \log n)$-dimensional sphere causes $\eps$-distortion.
Abstract:We present an approach to semi-supervised learning based on an exponential family characterization. Our approach generalizes previous work on coupled priors for hybrid generative/discriminative models. Our model is more flexible and natural than previous approaches. Experimental results on several data sets show that our approach also performs better in practice.