Abstract:Enterprises frequently enter into commercial contracts that can serve as vital sources of project-specific requirements. Contractual clauses are obligatory, and the requirements derived from contracts can detail the downstream implementation activities that non-legal stakeholders, including requirement analysts, engineers, and delivery personnel, need to conduct. However, comprehending contracts is cognitively demanding and error-prone for such stakeholders due to the extensive use of Legalese and the inherent complexity of contract language. Furthermore, contracts often contain ambiguously worded clauses to ensure comprehensive coverage. In contrast, non-legal stakeholders require a detailed and unambiguous comprehension of contractual clauses to craft actionable requirements. In this work, we introduce a novel legal NLP task that involves generating clarification questions for contracts. These questions aim to identify contract ambiguities on a document level, thereby assisting non-legal stakeholders in obtaining the necessary details for eliciting requirements. This task is challenged by three core issues: (1) data availability, (2) the length and unstructured nature of contracts, and (3) the complexity of legal text. To address these issues, we propose ConRAP, a retrieval-augmented prompting framework for generating clarification questions to disambiguate contractual text. Experiments conducted on contracts sourced from the publicly available CUAD dataset show that ConRAP with ChatGPT can detect ambiguities with an F2 score of 0.87. 70% of the generated clarification questions are deemed useful by human evaluators.
Abstract:Recent works on fake news detection have shown the efficacy of using emotions as a feature for improved performance. However, the cross-domain impact of emotion-guided features for fake news detection still remains an open problem. In this work, we propose an emotion-guided, domain-adaptive, multi-task approach for cross-domain fake news detection, proving the efficacy of emotion-guided models in cross-domain settings for various datasets.
Abstract:Recent works on fake news detection have shown the efficacy of using emotions as a feature or emotions-based features for improved performance. However, the impact of these emotion-guided features for fake news detection in cross-domain settings, where we face the problem of domain shift, is still largely unexplored. In this work, we evaluate the impact of emotion-guided features for cross-domain fake news detection, and further propose an emotion-guided, domain-adaptive approach using adversarial learning. We prove the efficacy of emotion-guided models in cross-domain settings for various combinations of source and target datasets from FakeNewsAMT, Celeb, Politifact and Gossipcop datasets.