Abstract:Conversion of non-native accented speech to native (American) English has a wide range of applications such as improving intelligibility of non-native speech. Previous work on this domain has used phonetic posteriograms as the target speech representation to train an acoustic model which is then used to extract a compact representation of input speech for accent conversion. In this work, we introduce the idea of using an effective articulatory speech representation, extracted from an acoustic-to-articulatory speech inversion system, to improve the acoustic model used in accent conversion. The idea to incorporate articulatory representations originates from their ability to well characterize accents in speech. To incorporate articulatory representations with conventional phonetic posteriograms, a multi-task learning based acoustic model is proposed. Objective and subjective evaluations show that the use of articulatory representations can improve the effectiveness of accent conversion.
Abstract:The transformer is a widely-used building block in modern neural networks. However, when applied to audio data, the transformer's acausal behaviour, which we term Acausal Attention (AA), has generally limited its application to offline tasks. In this paper we introduce Streaming Attention (SA), which operates causally with fixed latency, and requires lower compute and memory resources than AA to train. Next, we introduce Low Latency Streaming Attention (LLSA), a method which combines multiple SA layers without latency build-up proportional to the layer count. Comparative analysis between AA, SA and LLSA on Automatic Speech Recognition (ASR) and Speech Emotion Recognition (SER) tasks are presented. The results show that causal SA-based networks with fixed latencies of a few seconds (e.g. 1.8 seconds) and LLSA networks with latencies as short as 300 ms can perform comparably with acausal (AA) networks. We conclude that SA and LLSA methods retain many of the benefits of conventional acausal transformers, but with latency characteristics that make them practical to run in real-time streaming applications.