Abstract:Deep noise suppression (DNS) models enjoy widespread use throughout a variety of high-stakes speech applications. However, in this paper, we show that four recent DNS models can each be reduced to outputting unintelligible gibberish through the addition of imperceptible adversarial noise. Furthermore, our results show the near-term plausibility of targeted attacks, which could induce models to output arbitrary utterances, and over-the-air attacks. While the success of these attacks varies by model and setting, and attacks appear to be strongest when model-specific (i.e., white-box and non-transferable), our results highlight a pressing need for practical countermeasures in DNS systems.
Abstract:Existing approaches to reward inference from behavior typically assume that humans provide demonstrations according to specific models of behavior. However, humans often indicate their goals through a wide range of behaviors, from actions that are suboptimal due to poor planning or execution to behaviors which are intended to communicate goals rather than achieve them. We propose that supervised learning offers a unified framework to infer reward functions from any class of behavior, and show that such an approach is asymptotically Bayes-optimal under mild assumptions. Experiments on simulated robotic manipulation tasks show that our method can efficiently infer rewards from a wide variety of arbitrarily suboptimal demonstrations.