Abstract:Conversion of non-native accented speech to native (American) English has a wide range of applications such as improving intelligibility of non-native speech. Previous work on this domain has used phonetic posteriograms as the target speech representation to train an acoustic model which is then used to extract a compact representation of input speech for accent conversion. In this work, we introduce the idea of using an effective articulatory speech representation, extracted from an acoustic-to-articulatory speech inversion system, to improve the acoustic model used in accent conversion. The idea to incorporate articulatory representations originates from their ability to well characterize accents in speech. To incorporate articulatory representations with conventional phonetic posteriograms, a multi-task learning based acoustic model is proposed. Objective and subjective evaluations show that the use of articulatory representations can improve the effectiveness of accent conversion.
Abstract:Conv-TasNet is a recently proposed waveform-based deep neural network that achieves state-of-the-art performance in speech source separation. Its architecture consists of a learnable encoder/decoder and a separator that operates on top of this learned space. Various improvements have been proposed to Conv-TasNet. However, they mostly focus on the separator, leaving its encoder/decoder as a (shallow) linear operator. In this paper, we conduct an empirical study of Conv-TasNet and propose an enhancement to the encoder/decoder that is based on a (deep) non-linear variant of it. In addition, we experiment with the larger and more diverse LibriTTS dataset and investigate the generalization capabilities of the studied models when trained on a much larger dataset. We propose cross-dataset evaluation that includes assessing separations from the WSJ0-2mix, LibriTTS and VCTK databases. Our results show that enhancements to the encoder/decoder can improve average SI-SNR performance by more than 1 dB. Furthermore, we offer insights into the generalization capabilities of Conv-TasNet and the potential value of improvements to the encoder/decoder.
Abstract:Here we present a novel approach to conditioning the SampleRNN generative model for voice conversion (VC). Conventional methods for VC modify the perceived speaker identity by converting between source and target acoustic features. Our approach focuses on preserving voice content and depends on the generative network to learn voice style. We first train a multi-speaker SampleRNN model conditioned on linguistic features, pitch contour, and speaker identity using a multi-speaker speech corpus. Voice-converted speech is generated using linguistic features and pitch contour extracted from the source speaker, and the target speaker identity. We demonstrate that our system is capable of many-to-many voice conversion without requiring parallel data, enabling broad applications. Subjective evaluation demonstrates that our approach outperforms conventional VC methods.