Friedrich-Alexander Universität Erlangen-Nürnberg
Abstract:Remote sensing cross-modal text-image retrieval (RSCTIR) has gained attention for its utility in information mining. However, challenges remain in effectively integrating global and local information due to variations in remote sensing imagery and ensuring proper feature pre-alignment before modal fusion, which affects retrieval accuracy and efficiency. To address these issues, we propose CMPAGL, a cross-modal pre-aligned method leveraging global and local information. Our Gswin transformer block combines local window self-attention and global-local window cross-attention to capture multi-scale features. A pre-alignment mechanism simplifies modal fusion training, improving retrieval performance. Additionally, we introduce a similarity matrix reweighting (SMR) algorithm for reranking, and enhance the triplet loss function with an intra-class distance term to optimize feature learning. Experiments on four datasets, including RSICD and RSITMD, validate CMPAGL's effectiveness, achieving up to 4.65% improvement in R@1 and 2.28% in mean Recall (mR) over state-of-the-art methods.
Abstract:Detecting ships in synthetic aperture radar (SAR) images is challenging due to strong speckle noise, complex surroundings, and varying scales. This paper proposes MLDet, a multitask learning framework for SAR ship detection, consisting of object detection, speckle suppression, and target segmentation tasks. An angle classification loss with aspect ratio weighting is introduced to improve detection accuracy by addressing angular periodicity and object proportions. The speckle suppression task uses a dual-feature fusion attention mechanism to reduce noise and fuse shallow and denoising features, enhancing robustness. The target segmentation task, leveraging a rotated Gaussian-mask, aids the network in extracting target regions from cluttered backgrounds and improves detection efficiency with pixel-level predictions. The Gaussian-mask ensures ship centers have the highest probabilities, gradually decreasing outward under a Gaussian distribution. Additionally, a weighted rotated boxes fusion (WRBF) strategy combines multi-direction anchor predictions, filtering anchors beyond boundaries or with high overlap but low confidence. Extensive experiments on SSDD+ and HRSID datasets demonstrate the effectiveness and superiority of MLDet.
Abstract:This paper introduces a novel method for inter-camera color calibration for multispectral imaging with camera arrays using a consensus image. Capturing images using multispectral camera arrays has gained importance in medical, agricultural, and environmental processes. Due to fabrication differences, noise, or device altering, varying pixel sensitivities occur, influencing classification processes. Therefore, color calibration between the cameras is necessary. In existing methods, one of the camera images is chosen and considered as a reference, ignoring the color information of all other recordings. Our new approach does not just take one image as reference, but uses statistical information such as the location parameter to generate a consensus image as basis for calibration. This way, we managed to improve the PSNR values for the linear regression color correction algorithm by 1.15 dB and the improved color difference (iCID) values by 2.81.
Abstract:Learned wavelet video coders provide an explainable framework by performing discrete wavelet transforms in temporal, horizontal, and vertical dimensions. With a temporal transform based on motion-compensated temporal filtering (MCTF), spatial and temporal scalability is obtained. In this paper, we introduce variable rate support and a mechanism for quality adaption to different temporal layers for a higher coding efficiency. Moreover, we propose a multi-stage training strategy that allows training with multiple temporal layers. Our experiments demonstrate Bj{\o}ntegaard Delta bitrate savings of at least -17% compared to a learned MCTF model without these extensions. Our method also outperforms other learned video coders like DCVC-DC. Training and inference code is available at: https://github.com/FAU-LMS/Learned-pMCTF.
Abstract:Capturing images using multispectral camera arrays has gained importance in medical, agricultural and environmental processes. However, using all available spectral bands is infeasible and produces much data, while only a fraction is needed for a given task. Nearby bands may contain similar information, therefore redundant spectral bands should not be considered in the evaluation process to keep complexity and the data load low. In current methods, a restricted and pre-determined number of spectral bands is selected. Our approach improves this procedure by including preset conditions such as noise or the bandwidth of available filters, minimizing spectral redundancy. Furthermore, a minimal filter selection can be conducted, keeping the hardware setup at low costs, while still obtaining all important spectral information. In comparison to the fast binary search filter band selection method, we managed to reduce the amount of misclassified objects of the SMM dataset from 318 to 124 using a random forest classifier.
Abstract:In the pursuit of a reduced energy demand of VVC decoders, it was found that the coding tool configuration has a substantial influence on the bit rate efficiency and the decoding energy demand. The Advanced Design Space Exploration algorithm as proposed in the literature, can derive coding tool configurations that provide optimal trade-offs between rate and energy efficiency. Yet, some trade-off points in the design space cannot be reached with the state-of-the-art methodology, which defines coding tools for an entire bitstream. This work proposes a novel, granular adjustment of the coding tool usage in VVC. Consequently, the optimization algorithm is adjusted to explore coding tool configurations that operate on frame-level. Moreover, new optimization criteria are introduced to focus the search on specific bit rates. As a result, coding tool configurations are obtained which yield so far inaccessible trade-offs between bit rate efficiency and decoding energy demand for VVC-coded sequences. The proposed methodology extends the design space and enhances the continuity of the Pareto front.
Abstract:Multispectral imaging is very beneficial in diverse applications, like healthcare and agriculture, since it can capture absorption bands of molecules in different spectral areas. A promising approach for multispectral snapshot imaging are camera arrays. Image processing is necessary to warp all different views to the same view to retrieve a consistent multispectral datacube. This process is also called multispectral image registration. After a cross spectral disparity estimation, an occlusion detection is required to find the pixels that were not recorded by the peripheral cameras. In this paper, a novel fast edge-aware occlusion detection is presented, which is shown to reduce the runtime by at least a factor of 12. Moreover, an evaluation on ground truth data reveals better performance in terms of precision and recall. Finally, the quality of a final multispectral datacube can be improved by more than 1.5 dB in terms of PSNR as well as in terms of SSIM in an existing multispectral registration pipeline. The source code is available at \url{https://github.com/FAU-LMS/fast-occlusion-detection}.
Abstract:Retrieving the reflectance spectrum from objects is an essential task for many classification and detection problems, since many materials and processes have a unique spectral behaviour. In many cases, it is highly desirable to capture hyperspectral images due to the high spectral flexibility. Often, it is even necessary to capture hyperspectral videos or at least to be able to record a hyperspectral image at once, also called snapshot hyperspectral imaging, to avoid spectral smearing. For this task, a high-resolution snapshot hyperspectral camera array using a hexagonal shape is introduced.The hexagonal array for hyperspectral imaging uses off-the-shelf hardware, which enables high flexibility regarding employed cameras, lenses and filters. Hence, the spectral range can be easily varied by mounting a different set of filters. Moreover, the concept of using off-the-shelf hardware enables low prices in comparison to other approaches with highly specialized hardware. Since classical industrial cameras are used in this hyperspectral camera array, the spatial and temporal resolution is very high, while recording 37 hyperspectral channels in the range from 400 nm to 760 nm in 10 nm steps. A registration process is required for near-field imaging, which maps the peripheral camera views to the center view. It is shown that this combination using a hyperspectral camera array and the corresponding image registration pipeline is superior in comparison to other popular snapshot approaches. For this evaluation, a synthetic hyperspectral database is rendered. On the synthetic data, the novel approach outperforms its best competitor by more than 3 dB in reconstruction quality. This synthetic data is also used to show the superiority of the hexagonal shape in comparison to an orthogonal-spaced one. Moreover, a real-world high resolution hyperspectral video database is provided.
Abstract:Enabling high compression efficiency while keeping encoding energy consumption at a low level, requires prioritization of which videos need more sophisticated encoding techniques. However, the effects vary highly based on the content, and information on how good a video can be compressed is required. This can be measured by estimating the encoded bitstream size prior to encoding. We identified the errors between estimated motion vectors from Motion Search, an algorithm that predicts temporal changes in videos, correlates well to the encoded bitstream size. Combining Motion Search with Random Forests, the encoding bitrate can be estimated with a Pearson correlation of above 0.96.
Abstract:In this work, we present a comparison between color spaces namely YUV, LAB, RGB and their effect on learned image compression. For this we use the structure and color based learned image codec (SLIC) from our prior work, which consists of two branches - one for the luminance component (Y or L) and another for chrominance components (UV or AB). However, for the RGB variant we input all 3 channels in a single branch, similar to most learned image codecs operating in RGB. The models are trained for multiple bitrate configurations in each color space. We report the findings from our experiments by evaluating them on various datasets and compare the results to state-of-the-art image codecs. The YUV model performs better than the LAB variant in terms of MS-SSIM with a Bj{\o}ntegaard delta bitrate (BD-BR) gain of 7.5\% using VTM intra-coding mode as the baseline. Whereas the LAB variant has a better performance than YUV model in terms of CIEDE2000 having a BD-BR gain of 8\%. Overall, the RGB variant of SLIC achieves the best performance with a BD-BR gain of 13.14\% in terms of MS-SSIM and a gain of 17.96\% in CIEDE2000 at the cost of a higher model complexity.