Abstract:Video quality assessment (VQA) is a crucial task in the development of video compression standards, as it directly impacts the viewer experience. This paper presents the results of the Compressed Video Quality Assessment challenge, held in conjunction with the Advances in Image Manipulation (AIM) workshop at ECCV 2024. The challenge aimed to evaluate the performance of VQA methods on a diverse dataset of 459 videos, encoded with 14 codecs of various compression standards (AVC/H.264, HEVC/H.265, AV1, and VVC/H.266) and containing a comprehensive collection of compression artifacts. To measure the methods performance, we employed traditional correlation coefficients between their predictions and subjective scores, which were collected via large-scale crowdsourced pairwise human comparisons. For training purposes, participants were provided with the Compressed Video Quality Assessment Dataset (CVQAD), a previously developed dataset of 1022 videos. Up to 30 participating teams registered for the challenge, while we report the results of 6 teams, which submitted valid final solutions and code for reproducing the results. Moreover, we calculated and present the performance of state-of-the-art VQA methods on the developed dataset, providing a comprehensive benchmark for future research. The dataset, results, and online leaderboard are publicly available at https://challenges.videoprocessing.ai/challenges/compressed-video-quality-assessment.html.
Abstract:In the field of Image Quality Assessment (IQA), the adversarial robustness of the metrics poses a critical concern. This paper presents a comprehensive benchmarking study of various defense mechanisms in response to the rise in adversarial attacks on IQA. We systematically evaluate 25 defense strategies, including adversarial purification, adversarial training, and certified robustness methods. We applied 14 adversarial attack algorithms of various types in both non-adaptive and adaptive settings and tested these defenses against them. We analyze the differences between defenses and their applicability to IQA tasks, considering that they should preserve IQA scores and image quality. The proposed benchmark aims to guide future developments and accepts submissions of new methods, with the latest results available online: https://videoprocessing.ai/benchmarks/iqa-defenses.html.
Abstract:Objective no-reference image- and video-quality metrics are crucial in many computer vision tasks. However, state-of-the-art no-reference metrics have become learning-based and are vulnerable to adversarial attacks. The vulnerability of quality metrics imposes restrictions on using such metrics in quality control systems and comparing objective algorithms. Also, using vulnerable metrics as a loss for deep learning model training can mislead training to worsen visual quality. Because of that, quality metrics testing for vulnerability is a task of current interest. This paper proposes a new method for testing quality metrics vulnerability in the physical space. To our knowledge, quality metrics were not previously tested for vulnerability to this attack; they were only tested in the pixel space. We applied a physical adversarial Ti-Patch (Tiled Patch) attack to quality metrics and did experiments both in pixel and physical space. We also performed experiments on the implementation of physical adversarial wallpaper. The proposed method can be used as additional quality metrics in vulnerability evaluation, complementing traditional subjective comparison and vulnerability tests in the pixel space. We made our code and adversarial videos available on GitHub: https://github.com/leonenkova/Ti-Patch.
Abstract:Recently, the area of adversarial attacks on image quality metrics has begun to be explored, whereas the area of defences remains under-researched. In this study, we aim to cover that case and check the transferability of adversarial purification defences from image classifiers to IQA methods. In this paper, we apply several widespread attacks on IQA models and examine the success of the defences against them. The purification methodologies covered different preprocessing techniques, including geometrical transformations, compression, denoising, and modern neural network-based methods. Also, we address the challenge of assessing the efficacy of a defensive methodology by proposing ways to estimate output visual quality and the success of neutralizing attacks. Defences were tested against attack on three IQA metrics -- Linearity, MetaIQA and SPAQ. The code for attacks and defences is available at: (link is hidden for a blind review).
Abstract:No-reference image- and video-quality metrics are widely used in video processing benchmarks. The robustness of learning-based metrics under video attacks has not been widely studied. In addition to having success, attacks that can be employed in video processing benchmarks must be fast and imperceptible. This paper introduces an Invisible One-Iteration (IOI) adversarial attack on no reference image and video quality metrics. We compared our method alongside eight prior approaches using image and video datasets via objective and subjective tests. Our method exhibited superior visual quality across various attacked metric architectures while maintaining comparable attack success and speed. We made the code available on GitHub.
Abstract:Nowadays neural-network-based image- and video-quality metrics show better performance compared to traditional methods. However, they also became more vulnerable to adversarial attacks that increase metrics' scores without improving visual quality. The existing benchmarks of quality metrics compare their performance in terms of correlation with subjective quality and calculation time. However, the adversarial robustness of image-quality metrics is also an area worth researching. In this paper, we analyse modern metrics' robustness to different adversarial attacks. We adopted adversarial attacks from computer vision tasks and compared attacks' efficiency against 15 no-reference image/video-quality metrics. Some metrics showed high resistance to adversarial attacks which makes their usage in benchmarks safer than vulnerable metrics. The benchmark accepts new metrics submissions for researchers who want to make their metrics more robust to attacks or to find such metrics for their needs. Try our benchmark using pip install robustness-benchmark.
Abstract:Modern neural-network-based no-reference image- and video-quality metrics exhibit performance as high as full-reference metrics. These metrics are widely used to improve visual quality in computer vision methods and compare video processing methods. However, these metrics are not stable to traditional adversarial attacks, which can cause incorrect results. Our goal is to investigate the boundaries of no-reference metrics applicability, and in this paper, we propose a fast adversarial perturbation attack on no-reference quality metrics. The proposed attack (FACPA) can be exploited as a preprocessing step in real-time video processing and compression algorithms. This research can yield insights to further aid in designing of stable neural-network-based no-reference quality metrics.
Abstract:Video-quality measurement is a critical task in video processing. Nowadays, many implementations of new encoding standards - such as AV1, VVC, and LCEVC - use deep-learning-based decoding algorithms with perceptual metrics that serve as optimization objectives. But investigations of the performance of modern video- and image-quality metrics commonly employ videos compressed using older standards, such as AVC. In this paper, we present a new benchmark for video-quality metrics that evaluates video compression. It is based on a new dataset consisting of about 2,500 streams encoded using different standards, including AVC, HEVC, AV1, VP9, and VVC. Subjective scores were collected using crowdsourced pairwise comparisons. The list of evaluated metrics includes recent ones based on machine learning and neural networks. The results demonstrate that new no-reference metrics exhibit a high correlation with subjective quality and approach the capability of top full-reference metrics.
Abstract:Universal adversarial perturbation attacks are widely used to analyze image classifiers that employ convolutional neural networks. Nowadays, some attacks can deceive image- and video-quality metrics. So sustainability analysis of these metrics is important. Indeed, if an attack can confuse the metric, an attacker can easily increase quality scores. When developers of image- and video-algorithms can boost their scores through detached processing, algorithm comparisons are no longer fair. Inspired by the idea of universal adversarial perturbation for classifiers, we suggest a new method to attack differentiable no-reference quality metrics through universal perturbation. We applied this method to seven no-reference image- and video-quality metrics (PaQ-2-PiQ, Linearity, VSFA, MDTVSFA, KonCept512, Nima and SPAQ). For each one, we trained a universal perturbation that increases the respective scores. We also propose a method for assessing metric stability and identify the metrics that are the most vulnerable and the most resistant to our attack. The existence of successful universal perturbations appears to diminish the metric's ability to provide reliable scores. We therefore recommend our proposed method as an additional verification of metric reliability to complement traditional subjective tests and benchmarks.
Abstract:Despite the growing popularity of video super-resolution (VSR), there is still no good way to assess the quality of the restored details in upscaled frames. Some SR methods may produce the wrong digit or an entirely different face. Whether a method's results are trustworthy depends on how well it restores truthful details. Image super-resolution can use natural distributions to produce a high-resolution image that is only somewhat similar to the real one. VSR enables exploration of additional information in neighboring frames to restore details from the original scene. The ERQA metric, which we propose in this paper, aims to estimate a model's ability to restore real details using VSR. On the assumption that edges are significant for detail and character recognition, we chose edge fidelity as the foundation for this metric. Experimental validation of our work is based on the MSU Video Super-Resolution Benchmark, which includes the most difficult patterns for detail restoration and verifies the fidelity of details from the original frame. Code for the proposed metric is publicly available at https://github.com/msu-video-group/ERQA.