Abstract:Time series data analysis is prevalent across various domains, including finance, healthcare, and environmental monitoring. Traditional time series clustering methods often struggle to capture the complex temporal dependencies inherent in such data. In this paper, we propose the Variational Mixture Graph Autoencoder (VMGAE), a graph-based approach for time series clustering that leverages the structural advantages of graphs to capture enriched data relationships and produces Gaussian mixture embeddings for improved separability. Comparisons with baseline methods are included with experimental results, demonstrating that our method significantly outperforms state-of-the-art time-series clustering techniques. We further validate our method on real-world financial data, highlighting its practical applications in finance. By uncovering community structures in stock markets, our method provides deeper insights into stock relationships, benefiting market prediction, portfolio optimization, and risk management.
Abstract:Transformers have revolutionized Computer Vision (CV) and Natural Language Processing (NLP) through self-attention mechanisms. However, due to their complexity, their latent token representations are often difficult to interpret. We introduce a novel framework that interprets Transformer embeddings, uncovering meaningful semantic patterns within them. Based on this framework, we demonstrate that zero-shot unsupervised semantic segmentation can be performed effectively without any fine-tuning using a model pre-trained for tasks other than segmentation. Our method reveals the inherent capacity of Transformer models for understanding input semantics and achieves state-of-the-art performance in semantic segmentation, outperforming traditional segmentation models. Specifically, our approach achieves an accuracy of 67.2 % and an mIoU of 32.9 % on the COCO-Stuff dataset, as well as an mIoU of 51.9 % on the PASCAL VOC dataset. Additionally, we validate our interpretability framework on LLMs for text summarization, demonstrating its broad applicability and robustness.
Abstract:Contrastive learning models have demonstrated impressive abilities to capture semantic similarities by aligning representations in the embedding space. However, their performance can be limited by the quality of the training data and its inherent biases. While Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have been applied to generative models to align them with human preferences, their use in contrastive learning has yet to be explored. This paper introduces a novel method for training contrastive learning models using Preference Optimization (PO) to break down complex concepts. Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task. In particular, we focus on enhancing model robustness against typographic attacks, commonly seen in contrastive models like CLIP. We further apply our method to disentangle gender understanding and mitigate gender biases, offering a more nuanced control over these sensitive attributes. Our experiments demonstrate that models trained using PO outperform standard contrastive learning techniques while retaining their ability to handle adversarial challenges and maintain accuracy on other downstream tasks. This makes our method well-suited for tasks requiring fairness, robustness, and alignment with specific preferences. We evaluate our method on several vision-language tasks, tackling challenges such as typographic attacks. Additionally, we explore the model's ability to disentangle gender concepts and mitigate gender bias, showcasing the versatility of our approach.