Abstract:The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team. These challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding. This year, the challenges encompass four vision-based tasks. (1) Ball Action Spotting, focusing on precisely localizing when and which soccer actions related to the ball occur, (2) Dense Video Captioning, focusing on describing the broadcast with natural language and anchored timestamps, (3) Multi-View Foul Recognition, a novel task focusing on analyzing multiple viewpoints of a potential foul incident to classify whether a foul occurred and assess its severity, (4) Game State Reconstruction, another novel task focusing on reconstructing the game state from broadcast videos onto a 2D top-view map of the field. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.
Abstract:The performance of Video Instance Segmentation (VIS) methods has improved significantly with the advent of transformer networks. However, these networks often face challenges in training due to the high annotation cost. To address this, unsupervised and weakly-supervised methods have been developed to reduce the dependency on annotations. This work introduces a novel weakly-supervised method called Eigen-cluster VIS that, without requiring any mask annotations, achieves competitive accuracy compared to other VIS approaches. This method is based on two key innovations: a Temporal Eigenvalue Loss (TEL) and a clip-level Quality Cluster Coefficient (QCC). The TEL ensures temporal coherence by leveraging the eigenvalues of the Laplacian matrix derived from graph adjacency matrices. By minimizing the mean absolute error (MAE) between the eigenvalues of adjacent frames, this loss function promotes smooth transitions and stable segmentation boundaries over time, reducing temporal discontinuities and improving overall segmentation quality. The QCC employs the K-means method to ensure the quality of spatio-temporal clusters without relying on ground truth masks. Using the Davies-Bouldin score, the QCC provides an unsupervised measure of feature discrimination, allowing the model to self-evaluate and adapt to varying object distributions, enhancing robustness during the testing phase. These enhancements are computationally efficient and straightforward, offering significant performance gains without additional annotated data. The proposed Eigen-Cluster VIS method is evaluated on the YouTube-VIS 2019/2021 and OVIS datasets, demonstrating that it effectively narrows the performance gap between the fully-supervised and weakly-supervised VIS approaches. The code is available on: https://github.com/farnooshar/EigenClusterVIS
Abstract:In contrast to existing complex methodologies commonly employed for distilling knowledge from a teacher to a student, the pro-posed method showcases the efficacy of a simple yet powerful method for utilizing refined feature maps to transfer attention. The proposed method has proven to be effective in distilling rich information, outperforming existing methods in semantic segmentation as a dense prediction task. The proposed Attention-guided Feature Distillation (AttnFD) method, em-ploys the Convolutional Block Attention Module (CBAM), which refines feature maps by taking into account both channel-specific and spatial information content. By only using the Mean Squared Error (MSE) loss function between the refined feature maps of the teacher and the student,AttnFD demonstrates outstanding performance in semantic segmentation, achieving state-of-the-art results in terms of mean Intersection over Union (mIoU) on the PascalVoc 2012 and Cityscapes datasets. The Code is available at https://github.com/AmirMansurian/AttnFD.
Abstract:Deep spectral methods reframe the image decomposition process as a graph partitioning task by extracting features using self-supervised learning and utilizing the Laplacian of the affinity matrix to obtain eigensegments. However, instance segmentation has received less attention compared to other tasks within the context of deep spectral methods. This paper addresses the fact that not all channels of the feature map extracted from a self-supervised backbone contain sufficient information for instance segmentation purposes. In fact, Some channels are noisy and hinder the accuracy of the task. To overcome this issue, this paper proposes two channel reduction modules: Noise Channel Reduction (NCR) and Deviation-based Channel Reduction (DCR). The NCR retains channels with lower entropy, as they are less likely to be noisy, while DCR prunes channels with low standard deviation, as they lack sufficient information for effective instance segmentation. Furthermore, the paper demonstrates that the dot product, commonly used in deep spectral methods, is not suitable for instance segmentation due to its sensitivity to feature map values, potentially leading to incorrect instance segments. A new similarity metric called Bray-Curtis over Chebyshev (BoC) is proposed to address this issue. It takes into account the distribution of features in addition to their values, providing a more robust similarity measure for instance segmentation. Quantitative and qualitative results on the Youtube-VIS2019 dataset highlight the improvements achieved by the proposed channel reduction methods and the use of BoC instead of the conventional dot product for creating the affinity matrix. These improvements are observed in terms of mean Intersection over Union and extracted instance segments, demonstrating enhanced instance segmentation performance. The code is available on: https://github.com/farnooshar/SpecUnIIS
Abstract:Effective tracking and re-identification of players is essential for analyzing soccer videos. But, it is a challenging task due to the non-linear motion of players, the similarity in appearance of players from the same team, and frequent occlusions. Therefore, the ability to extract meaningful embeddings to represent players is crucial in developing an effective tracking and re-identification system. In this paper, a multi-purpose part-based person representation method, called PRTreID, is proposed that performs three tasks of role classification, team affiliation, and re-identification, simultaneously. In contrast to available literature, a single network is trained with multi-task supervision to solve all three tasks, jointly. The proposed joint method is computationally efficient due to the shared backbone. Also, the multi-task learning leads to richer and more discriminative representations, as demonstrated by both quantitative and qualitative results. To demonstrate the effectiveness of PRTreID, it is integrated with a state-of-the-art tracking method, using a part-based post-processing module to handle long-term tracking. The proposed tracking method outperforms all existing tracking methods on the challenging SoccerNet tracking dataset.
Abstract:Despite significant progress in deep learning-based optical flow methods, accurately estimating large displacements and repetitive patterns remains a challenge. The limitations of local features and similarity search patterns used in these algorithms contribute to this issue. Additionally, some existing methods suffer from slow runtime and excessive graphic memory consumption. To address these problems, this paper proposes a novel approach based on the RAFT framework. The proposed Attention-based Feature Localization (AFL) approach incorporates the attention mechanism to handle global feature extraction and address repetitive patterns. It introduces an operator for matching pixels with corresponding counterparts in the second frame and assigning accurate flow values. Furthermore, an Amorphous Lookup Operator (ALO) is proposed to enhance convergence speed and improve RAFTs ability to handle large displacements by reducing data redundancy in its search operator and expanding the search space for similarity extraction. The proposed method, Efficient RAFT (Ef-RAFT),achieves significant improvements of 10% on the Sintel dataset and 5% on the KITTI dataset over RAFT. Remarkably, these enhancements are attained with a modest 33% reduction in speed and a mere 13% increase in memory usage. The code is available at: https://github.com/n3slami/Ef-RAFT
Abstract:The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.
Abstract:In recent years, deep neural networks have achieved remarkable accuracy in computer vision tasks. With inference time being a crucial factor, particularly in dense prediction tasks such as semantic segmentation, knowledge distillation has emerged as a successful technique for improving the accuracy of lightweight student networks. The existing methods often neglect the information in channels and among different classes. To overcome these limitations, this paper proposes a novel method called Inter-Class Similarity Distillation (ICSD) for the purpose of knowledge distillation. The proposed method transfers high-order relations from the teacher network to the student network by independently computing intra-class distributions for each class from network outputs. This is followed by calculating inter-class similarity matrices for distillation using KL divergence between distributions of each pair of classes. To further improve the effectiveness of the proposed method, an Adaptive Loss Weighting (ALW) training strategy is proposed. Unlike existing methods, the ALW strategy gradually reduces the influence of the teacher network towards the end of training process to account for errors in teacher's predictions. Extensive experiments conducted on two well-known datasets for semantic segmentation, Cityscapes and Pascal VOC 2012, validate the effectiveness of the proposed method in terms of mIoU and pixel accuracy. The proposed method outperforms most of existing knowledge distillation methods as demonstrated by both quantitative and qualitative evaluations. Code is available at: https://github.com/AmirMansurian/AICSD