Abstract:Italy exhibits rich linguistic diversity across its territory due to the distinct regional languages spoken in different areas. Recent advances in self-supervised learning provide new opportunities to analyze Italy's linguistic varieties using speech data alone. This includes the potential to leverage representations learned from large amounts of data to better examine nuances between closely related linguistic varieties. In this study, we focus on automatically identifying the geographic region of origin of speech samples drawn from Italy's diverse language varieties. We leverage self-supervised learning models to tackle this task and analyze differences and similarities between Italy's regional languages. In doing so, we also seek to uncover new insights into the relationships among these diverse yet closely related varieties, which may help linguists understand their interconnected evolution and regional development over time and space. To improve the discriminative ability of learned representations, we evaluate several supervised contrastive learning objectives, both as pre-training steps and additional fine-tuning objectives. Experimental evidence shows that pre-trained self-supervised models can effectively identify regions from speech recording. Additionally, incorporating contrastive objectives during fine-tuning improves classification accuracy and yields embeddings that distinctly separate regional varieties, demonstrating the value of combining self-supervised pre-training and contrastive learning for this task.
Abstract:Voice disorders are pathologies significantly affecting patient quality of life. However, non-invasive automated diagnosis of these pathologies is still under-explored, due to both a shortage of pathological voice data, and diversity of the recording types used for the diagnosis. This paper proposes a novel solution that adopts transformers directly working on raw voice signals and addresses data shortage through synthetic data generation and data augmentation. Further, we consider many recording types at the same time, such as sentence reading and sustained vowel emission, by employing a Mixture of Expert ensemble to align the predictions on different data types. The experimental results, obtained on both public and private datasets, show the effectiveness of our solution in the disorder detection and classification tasks and largely improve over existing approaches.
Abstract:Speech models may be affected by performance imbalance in different population subgroups, raising concerns about fair treatment across these groups. Prior attempts to mitigate unfairness either focus on user-defined subgroups, potentially overlooking other affected subgroups, or do not explicitly improve the internal representation at the subgroup level. This paper proposes the first adoption of contrastive learning to mitigate speech model bias in underperforming subgroups. We employ a three-level learning technique that guides the model in focusing on different scopes for the contrastive loss, i.e., task, subgroup, and the errors within subgroups. The experiments on two spoken language understanding datasets and two languages demonstrate that our approach improves internal subgroup representations, thus reducing model bias and enhancing performance.
Abstract:Limited diversity in standardized benchmarks for evaluating audio representation learning (ARL) methods may hinder systematic comparison of current methods' capabilities. We present ARCH, a comprehensive benchmark for evaluating ARL methods on diverse audio classification domains, covering acoustic events, music, and speech. ARCH comprises 12 datasets, that allow us to thoroughly assess pre-trained SSL models of different sizes. ARCH streamlines benchmarking of ARL techniques through its unified access to a wide range of domains and its ability to readily incorporate new datasets and models. To address the current lack of open-source, pre-trained models for non-speech audio, we also release new pre-trained models that demonstrate strong performance on non-speech datasets. We argue that the presented wide-ranging evaluation provides valuable insights into state-of-the-art ARL methods, and is useful to pinpoint promising research directions.
Abstract:The Fearless Steps APOLLO Community Resource provides unparalleled opportunities to explore the potential of multi-speaker team communications from NASA Apollo missions. This study focuses on discovering the characteristics that make Apollo recordings more or less intelligible to Automatic Speech Recognition (ASR) methods. We extract, for each audio recording, interpretable metadata on recordings (signal-to-noise ratio, spectral flatness, presence of pauses, sentence duration), transcript (number of words spoken, speaking rate), or known a priori (speaker). We identify subgroups of audio recordings based on combinations of these metadata and compute each subgroup's performance (e.g., Word Error Rate) and the difference in performance (''divergence'') w.r.t the overall population. We then apply the Whisper model in different sizes, trained on English-only or multilingual datasets, in zero-shot or after fine-tuning. We conduct several analyses to (i) automatically identify and describe the most problematic subgroups for a given model, (ii) examine the impact of fine-tuning w.r.t. zero-shot at the subgroup level, (iii) understand the effect of model size on subgroup performance, and (iv) analyze if multilingual models are more sensitive than monolingual to subgroup performance disparities. The insights enhance our understanding of subgroup-specific performance variations, paving the way for advancements in optimizing ASR systems for Earth-to-space communications.
Abstract:In Natural Language Generation (NLG), contemporary Large Language Models (LLMs) face several challenges, such as generating fluent yet inaccurate outputs and reliance on fluency-centric metrics. This often leads to neural networks exhibiting "hallucinations". The SHROOM challenge focuses on automatically identifying these hallucinations in the generated text. To tackle these issues, we introduce two key components, a data augmentation pipeline incorporating LLM-assisted pseudo-labelling and sentence rephrasing, and a voting ensemble from three models pre-trained on Natural Language Inference (NLI) tasks and fine-tuned on diverse datasets.
Abstract:Exploring exoplanets has transformed our understanding of the universe by revealing many planetary systems that defy our current understanding. To study their atmospheres, spectroscopic observations are used to infer essential atmospheric properties that are not directly measurable. Estimating atmospheric parameters that best fit the observed spectrum within a specified atmospheric model is a complex problem that is difficult to model. In this paper, we present a multi-target probabilistic regression approach that combines deep learning and inverse modeling techniques within a multimodal architecture to extract atmospheric parameters from exoplanets. Our methodology overcomes computational limitations and outperforms previous approaches, enabling efficient analysis of exoplanetary atmospheres. This research contributes to advancements in the field of exoplanet research and offers valuable insights for future studies.
Abstract:Recent advances in eXplainable AI (XAI) have provided new insights into how models for vision, language, and tabular data operate. However, few approaches exist for understanding speech models. Existing work focuses on a few spoken language understanding (SLU) tasks, and explanations are difficult to interpret for most users. We introduce a new approach to explain speech classification models. We generate easy-to-interpret explanations via input perturbation on two information levels. 1) Word-level explanations reveal how each word-related audio segment impacts the outcome. 2) Paralinguistic features (e.g., prosody and background noise) answer the counterfactual: ``What would the model prediction be if we edited the audio signal in this way?'' We validate our approach by explaining two state-of-the-art SLU models on two speech classification tasks in English and Italian. Our findings demonstrate that the explanations are faithful to the model's inner workings and plausible to humans. Our method and findings pave the way for future research on interpreting speech models.
Abstract:Recent large-scale Spoken Language Understanding datasets focus predominantly on English and do not account for language-specific phenomena such as particular phonemes or words in different lects. We introduce ITALIC, the first large-scale speech dataset designed for intent classification in Italian. The dataset comprises 16,521 crowdsourced audio samples recorded by 70 speakers from various Italian regions and annotated with intent labels and additional metadata. We explore the versatility of ITALIC by evaluating current state-of-the-art speech and text models. Results on intent classification suggest that increasing scale and running language adaptation yield better speech models, monolingual text models outscore multilingual ones, and that speech recognition on ITALIC is more challenging than on existing Italian benchmarks. We release both the dataset and the annotation scheme to streamline the development of new Italian SLU models and language-specific datasets.