Abstract:Fungal simulation and control are considered crucial techniques in Bio-Art creation. However, coding algorithms for reliable fungal simulations have posed significant challenges for artists. This study equates fungal morphology simulation to a two-dimensional graphic time-series generation problem. We propose a zero-coding, neural network-driven cellular automaton. Fungal spread patterns are learned through an image segmentation model and a time-series prediction model, which then supervise the training of neural network cells, enabling them to replicate real-world spreading behaviors. We further implemented dynamic containment of fungal boundaries with lasers. Synchronized with the automaton, the fungus successfully spreads into pre-designed complex shapes in reality.
Abstract:Despite the enhanced realism and immersion provided by VR headsets, users frequently encounter adverse effects such as digital eye strain (DES), dry eye, and potential long-term visual impairment due to excessive eye stimulation from VR displays and pressure from the mask. Recent VR headsets are increasingly equipped with eye-oriented monocular cameras to segment ocular feature maps. Yet, to compute the incident light stimulus and observe periocular condition alterations, it is imperative to transform these relative measurements into metric dimensions. To bridge this gap, we propose a lightweight framework derived from the U-Net 3+ deep learning backbone that we re-optimised, to estimate measurable periocular depth maps. Compatible with any VR headset equipped with an eye-oriented monocular camera, our method reconstructs three-dimensional periocular regions, providing a metric basis for related light stimulus calculation protocols and medical guidelines. Navigating the complexities of data collection, we introduce a Dynamic Periocular Data Generation (DPDG) environment based on UE MetaHuman, which synthesises thousands of training images from a small quantity of human facial scan data. Evaluated on a sample of 36 participants, our method exhibited notable efficacy in the periocular global precision evaluation experiment, and the pupil diameter measurement.
Abstract:Earthquakes have a significant impact on societies and economies, driving the need for effective search and rescue strategies. With the growing role of AI and robotics in these operations, high-quality synthetic visual data becomes crucial. Current simulation methods, mostly focusing on single building damages, often fail to provide realistic visuals for complex urban settings. To bridge this gap, we introduce an innovative earthquake simulation system using the Chaos Physics System in Unreal Engine. Our approach aims to offer detailed and realistic visual simulations essential for AI and robotic training in rescue missions. By integrating real seismic waveform data, we enhance the authenticity and relevance of our simulations, ensuring they closely mirror real-world earthquake scenarios. Leveraging the advanced capabilities of Unreal Engine, our system delivers not only high-quality visualisations but also real-time dynamic interactions, making the simulated environments more immersive and responsive. By providing advanced renderings, accurate physical interactions, and comprehensive geological movements, our solution outperforms traditional methods in efficiency and user experience. Our simulation environment stands out in its detail and realism, making it a valuable tool for AI tasks such as path planning and image recognition related to earthquake responses. We validate our approach through three AI-based tasks: similarity detection, path planning, and image segmentation.
Abstract:This paper presents "AI Nushu," an emerging language system inspired by Nushu (women's scripts), the unique language created and used exclusively by ancient Chinese women who were thought to be illiterate under a patriarchal society. In this interactive installation, two artificial intelligence (AI) agents are trained in the Chinese dictionary and the Nushu corpus. By continually observing their environment and communicating, these agents collaborate towards creating a standard writing system to encode Chinese. It offers an artistic interpretation of the creation of a non-western script from a computational linguistics perspective, integrating AI technology with Chinese cultural heritage and a feminist viewpoint.
Abstract:We address the integration of storytelling and Large Language Models (LLMs) to develop engaging and believable Social Chatbots (SCs) in community settings. Motivated by the potential of fictional characters to enhance social interactions, we introduce Storytelling Social Chatbots (SSCs) and the concept of story engineering to transform fictional game characters into "live" social entities within player communities. Our story engineering process includes three steps: (1) Character and story creation, defining the SC's personality and worldview, (2) Presenting Live Stories to the Community, allowing the SC to recount challenges and seek suggestions, and (3) Communication with community members, enabling interaction between the SC and users. We employed the LLM GPT-3 to drive our SSC prototypes, "David" and "Catherine," and evaluated their performance in an online gaming community, "DE (Alias)," on Discord. Our mixed-method analysis, based on questionnaires (N=15) and interviews (N=8) with community members, reveals that storytelling significantly enhances the engagement and believability of SCs in community settings.
Abstract:In this paper, we present "1001 Nights", an AI-native game that allows players lead in-game reality through co-created storytelling with the character driven by large language model. The concept is inspired by Wittgenstein's idea of the limits of one's world being determined by the bounds of their language. Using advanced AI tools like GPT-4 and Stable Diffusion, the second iteration of the game enables the protagonist, Shahrzad, to realize words and stories in her world. The player can steer the conversation with the AI King towards specific keywords, which then become battle equipment in the game. This blend of interactive narrative and text-to-image transformation challenges the conventional border between the game world and reality through a dual perspective. We focus on Shahrzad, who seeks to alter her fate compared to the original folklore, and the player, who collaborates with AI to craft narratives and shape the game world. We explore the technical and design elements of implementing such a game with an objective to enhance the narrative game genre with AI-generated content and to delve into AI-native gameplay possibilities.
Abstract:Analysing 88 sources published from 2011 to 2021, this paper presents a first systematic review of the computer vision-based analysis of buildings and the built environments to assess its value to architectural and urban design studies. Following a multi-stage selection process, the types of algorithms and data sources used are discussed in respect to architectural applications such as a building classification, detail classification, qualitative environmental analysis, building condition survey, and building value estimation. This reveals current research gaps and trends, and highlights two main categories of research aims. First, to use or optimise computer vision methods for architectural image data, which can then help automate time-consuming, labour-intensive, or complex tasks of visual analysis. Second, to explore the methodological benefits of machine learning approaches to investigate new questions about the built environment by finding patterns and relationships between visual, statistical, and qualitative data, which can overcome limitations of conventional manual analysis. The growing body of research offers new methods to architectural and design studies, with the paper identifying future challenges and directions of research.
Abstract:Virtual Environments (VEs) provide the opportunity to simulate a wide range of applications, from training to entertainment, in a safe and controlled manner. For applications which require realistic representations of real world environments, the VEs need to provide multiple, physically accurate sensory stimuli. However, simulating all the senses that comprise the human sensory system (HSS) is a task that requires significant computational resources. Since it is intractable to deliver all senses at the highest quality, we propose a resource distribution scheme in order to achieve an optimal perceptual experience within the given computational budgets. This paper investigates resource balancing for multi-modal scenarios composed of aural, visual and olfactory stimuli. Three experimental studies were conducted. The first experiment identified perceptual boundaries for olfactory computation. In the second experiment, participants (N=25) were asked, across a fixed number of budgets (M=5), to identify what they perceived to be the best visual, acoustic and olfactory stimulus quality for a given computational budget. Results demonstrate that participants tend to prioritise visual quality compared to other sensory stimuli. However, as the budget size is increased, users prefer a balanced distribution of resources with an increased preference for having smell impulses in the VE. Based on the collected data, a quality prediction model is proposed and its accuracy is validated against previously unused budgets and an untested scenario in a third and final experiment.