Abstract:Conditional Flow Matching (CFM) unifies conventional generative paradigms such as diffusion models and flow matching. Interaction Field Matching (IFM) is a newer framework that generalizes Electrostatic Field Matching (EFM) rooted in Poisson Flow Generative Models (PFGM). While both frameworks define generative dynamics, they start from different objects: CFM specifies a conditional probability path in data space, whereas IFM specifies a physics-inspired interaction field in an augmented data space. This raises a basic question: are CFM and IFM genuinely different, or are they two descriptions of the same underlying dynamics? We show that they coincide for a natural subclass of IFM that we call forward-only IFM. Specifically, we construct a bijection between CFM and forward-only IFM. We further show that general IFM is strictly more expressive: it includes EFM and other interaction fields that cannot be realized within the standard CFM formulation. Finally, we highlight how this duality can benefit both frameworks: it provides a probabilistic interpretation of forward-only IFM and yields novel, IFM-driven techniques for CFM.
Abstract:Entropic optimal transport (EOT) in continuous spaces with quadratic cost is a classical tool for solving the domain translation problem. In practice, recent approaches optimize a weak dual EOT objective depending on a single potential, but doing so is computationally not efficient due to the intractable log-partition term. Existing methods typically resolve this obstacle in one of two ways: by significantly restricting the transport family to obtain closed-form normalization (via Gaussian-mixture parameterizations), or by using general neural parameterizations that require simulation-based training procedures. We propose Variational Entropic Optimal Transport (VarEOT), based on an exact variational reformulation of the log-partition $\log \mathbb{E}[\exp(\cdot)]$ as a tractable minimization over an auxiliary positive normalizer. This yields a differentiable learning objective optimized with stochastic gradients and avoids the necessity of MCMC simulations during the training. We provide theoretical guarantees, including finite-sample generalization bounds and approximation results under universal function approximation. Experiments on synthetic data and unpaired image-to-image translation demonstrate competitive or improved translation quality, while comparisons within the solvers that use the same weak dual EOT objective support the benefit of the proposed optimization principle.
Abstract:This paper studies the inverse problem of flow matching (FM) between distributions with finite exponential moment, a problem motivated by modern generative AI applications such as the distillation of flow matching models. Uniqueness of the solution is established in two cases - the one-dimensional setting and the Gaussian case. The general multidimensional problem remains open for future studies.
Abstract:Flow Matching (FM) method in generative modeling maps arbitrary probability distributions by constructing an interpolation between them and then learning the vector field that defines ODE for this interpolation. Recently, it was shown that FM can be modified to map distributions optimally in terms of the quadratic cost function for any initial interpolation. To achieve this, only specific optimal vector fields, which are typical for solutions of Optimal Transport (OT) problems, need to be considered during FM loss minimization. In this note, we show that considering only optimal vector fields can lead to OT in another approach: Action Matching (AM). Unlike FM, which learns a vector field for a manually chosen interpolation between given distributions, AM learns the vector field that defines ODE for an entire given sequence of distributions.
Abstract:We introduce the Target Concrete Score Identity Sampler (TCSIS), a method for sampling from unnormalized densities on discrete state spaces by learning the reverse dynamics of a Continuous-Time Markov Chain (CTMC). Our approach builds on a forward in time CTMC with a uniform noising kernel and relies on the proposed Target Concrete Score Identity, which relates the concrete score, the ratio of marginal probabilities of two states, to a ratio of expectations of Boltzmann factors under the forward uniform diffusion kernel. This formulation enables Monte Carlo estimation of the concrete score without requiring samples from the target distribution or computation of the partition function. We approximate the concrete score with a neural network and propose two algorithms: Self-Normalized TCSIS and Unbiased TCSIS. Finally, we demonstrate the effectiveness of TCSIS on problems from statistical physics.
Abstract:Diffusion models excel in noise-to-data generation tasks, providing a mapping from a Gaussian distribution to a more complex data distribution. However they struggle to model translations between complex distributions, limiting their effectiveness in data-to-data tasks. While Bridge Matching (BM) models address this by finding the translation between data distributions, their application to time-correlated data sequences remains unexplored. This is a critical limitation for video generation and manipulation tasks, where maintaining temporal coherence is particularly important. To address this gap, we propose Time-Correlated Video Bridge Matching (TCVBM), a framework that extends BM to time-correlated data sequences in the video domain. TCVBM explicitly models inter-sequence dependencies within the diffusion bridge, directly incorporating temporal correlations into the sampling process. We compare our approach to classical methods based on bridge matching and diffusion models for three video-related tasks: frame interpolation, image-to-video generation, and video super-resolution. TCVBM achieves superior performance across multiple quantitative metrics, demonstrating enhanced generation quality and reconstruction fidelity.




Abstract:Electrostatic generative models such as PFGM++ have recently emerged as a powerful framework, achieving state-of-the-art performance in image synthesis. PFGM++ operates in an extended data space with auxiliary dimensionality $D$, recovering the diffusion model framework as $D\to\infty$, while yielding superior empirical results for finite $D$. Like diffusion models, PFGM++ relies on expensive ODE simulations to generate samples, making it computationally costly. To address this, we propose Inverse Poisson Flow Matching (IPFM), a novel distillation framework that accelerates electrostatic generative models across all values of $D$. Our IPFM reformulates distillation as an inverse problem: learning a generator whose induced electrostatic field matches that of the teacher. We derive a tractable training objective for this problem and show that, as $D \to \infty$, our IPFM closely recovers Score Identity Distillation (SiD), a recent method for distilling diffusion models. Empirically, our IPFM produces distilled generators that achieve near-teacher or even superior sample quality using only a few function evaluations. Moreover, we observe that distillation converges faster for finite $D$ than in the $D \to \infty$ (diffusion) limit, which is consistent with prior findings that finite-$D$ PFGM++ models exhibit more favorable optimization and sampling properties.
Abstract:While achieving exceptional generative quality, modern diffusion, flow, and other matching models suffer from slow inference, as they require many steps of iterative generation. Recent distillation methods address this by training efficient one-step generators under the guidance of a pre-trained teacher model. However, these methods are often constrained to only one specific framework, e.g., only to diffusion or only to flow models. Furthermore, these methods are naturally data-free, and to benefit from the usage of real data, it is required to use an additional complex adversarial training with an extra discriminator model. In this paper, we present RealUID, a universal distillation framework for all matching models that seamlessly incorporates real data into the distillation procedure without GANs. Our RealUID approach offers a simple theoretical foundation that covers previous distillation methods for Flow Matching and Diffusion models, and is also extended to their modifications, such as Bridge Matching and Stochastic Interpolants.
Abstract:Risk-averse reinforcement learning finds application in various high-stakes fields. Unlike classical reinforcement learning, which aims to maximize expected returns, risk-averse agents choose policies that minimize risk, occasionally sacrificing expected value. These preferences can be framed through utility theory. We focus on the specific case of the exponential utility function, where we can derive the Bellman equations and employ various reinforcement learning algorithms with few modifications. However, these methods suffer from numerical instability due to the need for exponent computation throughout the process. To address this, we introduce a numerically stable and mathematically sound loss function based on the Itakura-Saito divergence for learning state-value and action-value functions. We evaluate our proposed loss function against established alternatives, both theoretically and empirically. In the experimental section, we explore multiple financial scenarios, some with known analytical solutions, and show that our loss function outperforms the alternatives.
Abstract:Diffusion models for super-resolution (SR) produce high-quality visual results but require expensive computational costs. Despite the development of several methods to accelerate diffusion-based SR models, some (e.g., SinSR) fail to produce realistic perceptual details, while others (e.g., OSEDiff) may hallucinate non-existent structures. To overcome these issues, we present RSD, a new distillation method for ResShift, one of the top diffusion-based SR models. Our method is based on training the student network to produce such images that a new fake ResShift model trained on them will coincide with the teacher model. RSD achieves single-step restoration and outperforms the teacher by a large margin. We show that our distillation method can surpass the other distillation-based method for ResShift - SinSR - making it on par with state-of-the-art diffusion-based SR distillation methods. Compared to SR methods based on pre-trained text-to-image models, RSD produces competitive perceptual quality, provides images with better alignment to degraded input images, and requires fewer parameters and GPU memory. We provide experimental results on various real-world and synthetic datasets, including RealSR, RealSet65, DRealSR, ImageNet, and DIV2K.