Abstract:Installing probabilistic world models into artificial agents opens an efficient channel for humans to communicate with and control these agents. In addition to updating agent policies, humans can modify their internal world models in order to influence their decisions. The challenge, however, is that currently existing world models are difficult for humans to adapt because they lack a natural communication interface. Aimed at addressing this shortcoming, we develop Language-Guided World Models (LWMs), which can capture environment dynamics by reading language descriptions. These models enhance agent communication efficiency, allowing humans to simultaneously alter their behavior on multiple tasks with concise language feedback. They also enable agents to self-learn from texts originally written to instruct humans. To facilitate the development of LWMs, we design a challenging benchmark based on the game of MESSENGER (Hanjie et al., 2021), requiring compositional generalization to new language descriptions and environment dynamics. Our experiments reveal that the current state-of-the-art Transformer architecture performs poorly on this benchmark, motivating us to design a more robust architecture. To showcase the practicality of our proposed LWMs, we simulate a scenario where these models augment the interpretability and safety of an agent by enabling it to generate and discuss plans with a human before execution. By effectively incorporating language feedback on the plan, the models boost the agent performance in the real environment by up to three times without collecting any interactive experiences in this environment.
Abstract:The use of appearance codes in recent work on generative modeling has enabled novel view renders with variable appearance and illumination, such as day-time and night-time renders of a scene. A major limitation of this technique is the need to re-train new appearance codes for every scene on inference, so in this work we address this problem proposing a framework that learns a joint embedding space for the appearance and structure of the scene by enforcing a contrastive loss constraint between different modalities. We apply our framework to a simple Variational Auto-Encoder model on the RADIATE dataset \cite{sheeny2021radiate} and qualitatively demonstrate that we can generate new renders of night-time photos using day-time appearance codes without additional optimization iterations. Additionally, we compare our model to a baseline VAE that uses the standard per-image appearance code technique and show that our approach achieves generations of similar quality without learning appearance codes for any unseen images on inference.
Abstract:Existing benchmarks for evaluating long video understanding falls short on multiple aspects, either lacking in scale or quality of annotations. These limitations arise from the difficulty in collecting dense annotations for long videos (e.g. actions, dialogues, etc.), which are often obtained by manually labeling many frames per second. In this work, we introduce an automated Annotation and Video Stream Alignment Pipeline (abbreviated ASAP). We demonstrate the generality of ASAP by aligning unlabeled videos of four different sports (Cricket, Football, Basketball, and American Football) with their corresponding dense annotations (i.e. commentary) freely available on the web. Our human studies indicate that ASAP can align videos and annotations with high fidelity, precision, and speed. We then leverage ASAP scalability to create LCric, a large-scale long video understanding benchmark, with over 1000 hours of densely annotated long Cricket videos (with an average sample length of 50 mins) collected at virtually zero annotation cost. We benchmark and analyze state-of-the-art video understanding models on LCric through a large set of compositional multi-choice and regression queries. We establish a human baseline that indicates significant room for new research to explore. The dataset along with the code for ASAP and baselines can be accessed here: https://asap-benchmark.github.io/.
Abstract:Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.