Abstract:Single Image Super-Resolution (SISR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. Deep learning, especially Convolutional Neural Networks (CNNs), has advanced SISR. However, increasing network depth increases parameters, and memory usage, and slows training, which is problematic for resource-limited devices. To address this, lightweight models are developed to balance accuracy and efficiency. We propose the Involution & BSConv Multi-Depth Distillation Network (IBMDN), combining Involution & BSConv Multi-Depth Distillation Block (IBMDB) and the Contrast and High-Frequency Attention Block (CHFAB). IBMDB integrates Involution and BSConv to balance computational efficiency and feature extraction. CHFAB enhances high-frequency details for better visual quality. IBMDB is compatible with other SISR architectures and reduces complexity, improving evaluation metrics like PSNR and SSIM. In transformer-based models, IBMDB reduces memory usage while improving feature extraction. In GANs, it enhances perceptual quality, balancing pixel-level accuracy with perceptual details. Our experiments show that the method achieves high accuracy with minimal computational cost. The code is available at GitHub.
Abstract:This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.