Abstract:Contrastively-trained Vision-Language Models (VLMs) like CLIP have become the de facto approach for discriminative vision-language representation learning. However, these models have limited language understanding, often exhibiting a "bag of words" behavior. At the same time, Large Vision-Language Models (LVLMs), which combine vision encoders with LLMs, have been shown capable of detailed vision-language reasoning, yet their autoregressive nature renders them less suitable for discriminative tasks. In this work, we propose to combine "the best of both worlds": a new training approach for discriminative fine-tuning of LVLMs that results in strong discriminative and compositional capabilities. Essentially, our approach converts a generative LVLM into a discriminative one, unlocking its capability for powerful image-text discrimination combined with enhanced language understanding. Our contributions include: (1) A carefully designed training/optimization framework that utilizes image-text pairs of variable length and granularity for training the model with both contrastive and next-token prediction losses. This is accompanied by ablation studies that justify the necessity of our framework's components. (2) A parameter-efficient adaptation method using a combination of soft prompting and LoRA adapters. (3) Significant improvements over state-of-the-art CLIP-like models of similar size, including standard image-text retrieval benchmarks and notable gains in compositionality.
Abstract:Diffusion models are proficient at generating high-quality images. They are however effective only when operating at the resolution used during training. Inference at a scaled resolution leads to repetitive patterns and structural distortions. Retraining at higher resolutions quickly becomes prohibitive. Thus, methods enabling pre-existing diffusion models to operate at flexible test-time resolutions are highly desirable. Previous works suffer from frequent artifacts and often introduce large latency overheads. We propose two simple modules that combine to solve these issues. We introduce a Frequency Modulation (FM) module that leverages the Fourier domain to improve the global structure consistency, and an Attention Modulation (AM) module which improves the consistency of local texture patterns, a problem largely ignored in prior works. Our method, coined Fam diffusion, can seamlessly integrate into any latent diffusion model and requires no additional training. Extensive qualitative results highlight the effectiveness of our method in addressing structural and local artifacts, while quantitative results show state-of-the-art performance. Also, our method avoids redundant inference tricks for improved consistency such as patch-based or progressive generation, leading to negligible latency overheads.
Abstract:Despite recent successes, LVLMs or Large Vision Language Models are prone to hallucinating details like objects and their properties or relations, limiting their real-world deployment. To address this and improve their robustness, we present CLIP-DPO, a preference optimization method that leverages contrastively pre-trained Vision-Language (VL) embedding models, such as CLIP, for DPO-based optimization of LVLMs. Unlike prior works tackling LVLM hallucinations, our method does not rely on paid-for APIs, and does not require additional training data or the deployment of other external LVLMs. Instead, starting from the initial pool of supervised fine-tuning data, we generate a diverse set of predictions, which are ranked based on their CLIP image-text similarities, and then filtered using a robust rule-based approach to obtain a set of positive and negative pairs for DPO-based training. We applied CLIP-DPO fine-tuning to the MobileVLM-v2 family of models and to LlaVA-1.5, in all cases observing significant improvements in terms of hallucination reduction over baseline models. We also observe better performance for zero-shot classification, suggesting improved grounding capabilities, and verify that the original performance on standard LVLM benchmarks is overall preserved.
Abstract:Despite noise and caption quality having been acknowledged as important factors impacting vision-language contrastive pre-training, in this paper, we show that the full potential of improving the training process by addressing such issues is yet to be realized. Specifically, we firstly study and analyze two issues affecting training: incorrect assignment of negative pairs, and low caption quality and diversity. Then, we devise effective solutions for addressing both problems, which essentially require training with multiple true positive pairs. Finally, we propose training with sigmoid loss to address such a requirement. We show very large gains over the current state-of-the-art for both image recognition ($\sim +6\%$ on average over 11 datasets) and image retrieval ($\sim +19\%$ on Flickr30k and $\sim +15\%$ on MSCOCO).
Abstract:In this paper, we introduce YONOS-SR, a novel stable diffusion-based approach for image super-resolution that yields state-of-the-art results using only a single DDIM step. We propose a novel scale distillation approach to train our SR model. Instead of directly training our SR model on the scale factor of interest, we start by training a teacher model on a smaller magnification scale, thereby making the SR problem simpler for the teacher. We then train a student model for a higher magnification scale, using the predictions of the teacher as a target during the training. This process is repeated iteratively until we reach the target scale factor of the final model. The rationale behind our scale distillation is that the teacher aids the student diffusion model training by i) providing a target adapted to the current noise level rather than using the same target coming from ground truth data for all noise levels and ii) providing an accurate target as the teacher has a simpler task to solve. We empirically show that the distilled model significantly outperforms the model trained for high scales directly, specifically with few steps during inference. Having a strong diffusion model that requires only one step allows us to freeze the U-Net and fine-tune the decoder on top of it. We show that the combination of spatially distilled U-Net and fine-tuned decoder outperforms state-of-the-art methods requiring 200 steps with only one single step.
Abstract:DETR-based object detectors have achieved remarkable performance but are sample-inefficient and exhibit slow convergence. Unsupervised pretraining has been found to be helpful to alleviate these impediments, allowing training with large amounts of unlabeled data to improve the detector's performance. However, existing methods have their own limitations, like keeping the detector's backbone frozen in order to avoid performance degradation and utilizing pretraining objectives misaligned with the downstream task. To overcome these limitations, we propose a simple pretraining framework for DETR-based detectors that consists of three simple yet key ingredients: (i) richer, semantics-based initial proposals derived from high-level feature maps, (ii) discriminative training using object pseudo-labels produced via clustering, (iii) self-training to take advantage of the improved object proposals learned by the detector. We report two main findings: (1) Our pretraining outperforms prior DETR pretraining works on both the full and low data regimes by significant margins. (2) We show we can pretrain DETR from scratch (including the backbone) directly on complex image datasets like COCO, paving the path for unsupervised representation learning directly using DETR.
Abstract:Vision-Language (V-L) models trained with contrastive learning to align the visual and language modalities have been shown to be strong few-shot learners. Soft prompt learning is the method of choice for few-shot downstream adaption aiming to bridge the modality gap caused by the distribution shift induced by the new domain. While parameter-efficient, prompt learning still requires access to the model weights and can be computationally infeasible for large models with billions of parameters. To address these shortcomings, in this work, we describe a black-box method for V-L few-shot adaptation that (a) operates on pre-computed image and text features and hence works without access to the model's weights, (b) it is orders of magnitude faster at training time, (c) it is amenable to both supervised and unsupervised training, and (d) it can be even used to align image and text features computed from uni-modal models. To achieve this, we propose Linear Feature Alignment (LFA), a simple linear approach for V-L re-alignment in the target domain. LFA is initialized from a closed-form solution to a least-squares problem and then it is iteratively updated by minimizing a re-ranking loss. Despite its simplicity, our approach can even surpass soft-prompt learning methods as shown by extensive experiments on 11 image and 2 video datasets.
Abstract:This paper is on Few-Shot Object Detection (FSOD), where given a few templates (examples) depicting a novel class (not seen during training), the goal is to detect all of its occurrences within a set of images. From a practical perspective, an FSOD system must fulfil the following desiderata: (a) it must be used as is, without requiring any fine-tuning at test time, (b) it must be able to process an arbitrary number of novel objects concurrently while supporting an arbitrary number of examples from each class and (c) it must achieve accuracy comparable to a closed system. While there are (relatively) few systems that support (a), to our knowledge, there is no system supporting (b) and (c). In this work, we make the following contributions: We introduce, for the first time, a simple, yet powerful, few-shot detection transformer (FS-DETR) that can address both desiderata (a) and (b). Our system builds upon the DETR framework, extending it based on two key ideas: (1) feed the provided visual templates of the novel classes as visual prompts during test time, and (2) ``stamp'' these prompts with pseudo-class embeddings, which are then predicted at the output of the decoder. Importantly, we show that our system is not only more flexible than existing methods, but also, making a step towards satisfying desideratum (c), it is more accurate, matching and outperforming the current state-of-the-art on the most well-established benchmarks (PASCAL VOC & MSCOCO) for FSOD. Code will be made available.
Abstract:Prompt tuning provides an efficient mechanism to adapt large vision-language models to downstream tasks by treating part of the input language prompts as learnable parameters while freezing the rest of the model. Existing works for prompt tuning are however prone to damaging the generalization capabilities of the foundation models, because the learned prompts lack the capacity of covering certain concepts within the language model. To avoid such limitation, we propose a probabilistic modeling of the underlying distribution of prompts, allowing prompts within the support of an associated concept to be derived through stochastic sampling. This results in a more complete and richer transfer of the information captured by the language model, providing better generalization capabilities for downstream tasks. The resulting algorithm relies on a simple yet powerful variational framework that can be directly integrated with other developments. We show our approach is seamlessly integrated into both standard and conditional prompt learning frameworks, improving the performance on both cases considerably, especially with regards to preserving the generalization capability of the original model. Our method provides the current state-of-the-art for prompt learning, surpassing CoCoOp by 1.6% average Top-1 accuracy on the standard benchmark. Remarkably, it even surpasses the original CLIP model in terms of generalization to new classes. Implementation code will be released.
Abstract:This paper is on soft prompt learning for Vision \& Language (V&L) models. Similarly to their NLP counterparts, V\&L models can be adapted to a downstream task by learning soft continuous prompts using a few training examples. Current methods learn the soft prompts by minimizing a cross-entropy loss using as class weights the features obtained by passing the prompts plus the class names through the text encoder. Such methods, however, significantly overfit the training data suffering from large accuracy degradation when tested on unseen classes from the same domain. Our main contribution, in this paper, is a surprisingly simple approach to alleviate this problem: we use a second cross entropy loss to minimize the distance between the learned soft prompts and a set of hand-engineered manual prompts (obtained by prompt engineering). The proposed loss can be interpreted in multiple ways including as a regularizer, as a means for language-based augmentation, and as a way of learning more discriminative class centroids. Importantly, our formulation is inherently amenable to including, during training, virtual classes, i.e. class names for which no visual samples are available, further increasing the robustness of the learned prompts. Through extensive evaluations on 11 datasets, we show that our approach (a) significantly outperforms all prior works on soft prompting, and (b) matches and surpasses, for the first time, the accuracy on novel classes obtained by hand-crafted prompts and CLIP for the majority of the test datasets. Code will be made available.