Abstract:Purpose: Estimation of patient-specific organ doses is required for more comprehensive dose metrics, such as effective dose. Currently, available methods are performed retrospectively using the CT images themselves, which can only be done after the scan. To optimize CT acquisitions before scanning, rapid prediction of patient-specific organ dose is needed prospectively, using available scout images. We, therefore, devise an end-to-end, fully-automated deep learning solution to perform real-time, patient-specific, organ-level dosimetric estimation of CT scans. Approach: We propose the Scout-Net model for CT dose prediction at six different organs as well as for the overall patient body, leveraging the routinely obtained frontal and lateral scout images of patients, before their CT scans. To obtain reference values of the organ doses, we used Monte Carlo simulation and 3D segmentation methods on the corresponding CT images of the patients. Results: We validate our proposed Scout-Net model against real patient CT data and demonstrate the effectiveness in estimating organ doses in real-time (only 27 ms on average per scan). Additionally, we demonstrate the efficiency (real-time execution), sufficiency (reasonable error rates), and robustness (consistent across varying patient sizes) of the Scout-Net model. Conclusions: An effective, efficient, and robust Scout-Net model, once incorporated into the CT acquisition plan, could potentially guide the automatic exposure control for balanced image quality and radiation dose.
Abstract:Medical image classification is one of the most important tasks for computer-aided diagnosis. Deep learning models, particularly convolutional neural networks, have been successfully used for disease classification from medical images, facilitated by automated feature learning. However, the diverse imaging modalities and clinical pathology make it challenging to construct generalized and robust classifications. Towards improving the model performance, we propose a novel pretraining approach, namely Forward Forward Contrastive Learning (FFCL), which leverages the Forward-Forward Algorithm in a contrastive learning framework--both locally and globally. Our experimental results on the chest X-ray dataset indicate that the proposed FFCL achieves superior performance (3.69% accuracy over ImageNet pretrained ResNet-18) over existing pretraining models in the pneumonia classification task. Moreover, extensive ablation experiments support the particular local and global contrastive pretraining design in FFCL.
Abstract:Disease diagnosis from medical images via supervised learning is usually dependent on tedious, error-prone, and costly image labeling by medical experts. Alternatively, semi-supervised learning and self-supervised learning offer effectiveness through the acquisition of valuable insights from readily available unlabeled images. We present Semi-Supervised Relational Contrastive Learning (SRCL), a novel semi-supervised learning model that leverages self-supervised contrastive loss and sample relation consistency for the more meaningful and effective exploitation of unlabeled data. Our experimentation with the SRCL model explores both pre-train/fine-tune and joint learning of the pretext (contrastive learning) and downstream (diagnostic classification) tasks. We validate against the ISIC 2018 Challenge benchmark skin lesion classification dataset and demonstrate the effectiveness of our semi-supervised method on varying amounts of labeled data.
Abstract:Deep learning-based super-resolution methods have shown great promise, especially for single image super-resolution (SISR) tasks. Despite the performance gain, these methods are limited due to their reliance on copious data for model training. In addition, supervised SISR solutions rely on local neighbourhood information focusing only on the feature learning processes for the reconstruction of low-dimensional images. Moreover, they fail to capitalize on global context due to their constrained receptive field. To combat these challenges, this paper proposes a novel image-specific solution, namely non-local variational autoencoder (\texttt{NLVAE}), to reconstruct a high-resolution (HR) image from a single low-resolution (LR) image without the need for any prior training. To harvest maximum details for various receptive regions and high-quality synthetic images, \texttt{NLVAE} is introduced as a self-supervised strategy that reconstructs high-resolution images using disentangled information from the non-local neighbourhood. Experimental results from seven benchmark datasets demonstrate the effectiveness of the \texttt{NLVAE} model. Moreover, our proposed model outperforms a number of baseline and state-of-the-art methods as confirmed through extensive qualitative and quantitative evaluations.
Abstract:Deep learning-based models, when trained in a fully-supervised manner, can be effective in performing complex image analysis tasks, although contingent upon the availability of large labeled datasets. Especially in the medical imaging domain, however, expert image annotation is expensive, time-consuming, and prone to variability. Semi-supervised learning from limited quantities of labeled data has shown promise as an alternative. Maximizing knowledge gains from copious unlabeled data benefits semi-supervised learning models. Moreover, learning multiple tasks within the same model further improves its generalizability. We propose MultiMix, a new multi-task learning model that jointly learns disease classification and anatomical segmentation in a semi-supervised manner, while preserving explainability through a novel saliency bridge between the two tasks. Our experiments with varying quantities of multi-source labeled data in the training sets confirm the effectiveness of MultiMix in the simultaneous classification of pneumonia and segmentation of the lungs in chest X-ray images. Moreover, both in-domain and cross-domain evaluations across these tasks further showcase the potential of our model to adapt to challenging generalization scenarios.
Abstract:CT image quality is heavily reliant on radiation dose, which causes a trade-off between radiation dose and image quality that affects the subsequent image-based diagnostic performance. However, high radiation can be harmful to both patients and operators. Several (deep learning-based) approaches have been attempted to denoise low dose images. However, those approaches require access to large training sets, specifically the full dose CT images for reference, which can often be difficult to obtain. Self-supervised learning is an emerging alternative for lowering the reference data requirement facilitating unsupervised learning. Currently available self-supervised CT denoising works are either dependent on foreign domain or pretexts are not very task-relevant. To tackle the aforementioned challenges, we propose a novel self-supervised learning approach, namely Self-Supervised Window-Leveling for Image DeNoising (SSWL-IDN), leveraging an innovative, task-relevant, simple, yet effective surrogate -- prediction of the window-leveled equivalent. SSWL-IDN leverages residual learning and a hybrid loss combining perceptual loss and MSE, all incorporated in a VAE framework. Our extensive (in- and cross-domain) experimentation demonstrates the effectiveness of SSWL-IDN in aggressive denoising of CT (abdomen and chest) images acquired at 5\% dose level only.
Abstract:Semi-supervised learning via learning from limited quantities of labeled data has been investigated as an alternative to supervised counterparts. Maximizing knowledge gains from copious unlabeled data benefit semi-supervised learning settings. Moreover, learning multiple tasks within the same model further improves model generalizability. We propose a novel multitask learning model, namely MultiMix, which jointly learns disease classification and anatomical segmentation in a sparingly supervised manner, while preserving explainability through bridge saliency between the two tasks. Our extensive experimentation with varied quantities of labeled data in the training sets justify the effectiveness of our multitasking model for the classification of pneumonia and segmentation of lungs from chest X-ray images. Moreover, both in-domain and cross-domain evaluations across the tasks further showcase the potential of our model to adapt to challenging generalization scenarios.
Abstract:Scoliosis is a congenital disease that causes lateral curvature in the spine. Its assessment relies on the identification and localization of vertebrae in spinal X-ray images, conventionally via tedious and time-consuming manual radiographic procedures that are prone to subjectivity and observational variability. Reliability can be improved through the automatic detection and localization of spinal landmarks. To guide a CNN in the learning of spinal shape while detecting landmarks in X-ray images, we propose a novel loss based on a bipartite distance (BPD) measure, and show that it consistently improves landmark detection performance.
Abstract:Medical image computing has advanced rapidly with the advent of deep learning techniques such as convolutional neural networks. Deep convolutional neural networks can perform exceedingly well given full supervision. However, the success of such fully-supervised models for various image analysis tasks (e.g., anatomy or lesion segmentation from medical images) is limited to the availability of massive amounts of labeled data. Given small sample sizes, such models are prohibitively data biased with large domain shift. To tackle this problem, we propose a novel end-to-end medical image segmentation model, namely Progressive Adversarial Semantic Segmentation (PASS), which can make improved segmentation predictions without requiring any domain-specific data during training time. Our extensive experimentation with 8 public diabetic retinopathy and chest X-ray datasets, confirms the effectiveness of PASS for accurate vascular and pulmonary segmentation, both for in-domain and cross-domain evaluations.
Abstract:Semi-supervised learning has recently been attracting attention as an alternative to fully supervised models that require large pools of labeled data. Moreover, optimizing a model for multiple tasks can provide better generalizability than single-task learning. Leveraging self-supervision and adversarial training, we propose a novel general purpose semi-supervised, multiple-task model---namely, self-supervised, semi-supervised, multitask learning (S$^4$MTL)---for accomplishing two important tasks in medical imaging, segmentation and diagnostic classification. Experimental results on chest and spine X-ray datasets suggest that our S$^4$MTL model significantly outperforms semi-supervised single task, semi/fully-supervised multitask, and fully-supervised single task models, even with a 50\% reduction of class and segmentation labels. We hypothesize that our proposed model can be effective in tackling limited annotation problems for joint training, not only in medical imaging domains, but also for general-purpose vision tasks.