Abstract:Accurate dose distribution prediction is crucial in the radiotherapy planning. Although previous methods based on convolutional neural network have shown promising performance, they have the problem of over-smoothing, leading to prediction without important high-frequency details. Recently, diffusion model has achieved great success in computer vision, which excels in generating images with more high-frequency details, yet suffers from time-consuming and extensive computational resource consumption. To alleviate these problems, we propose Frequency-Decomposed Diffusion Model (FDDM) that refines the high-frequency subbands of the dose map. To be specific, we design a Coarse Dose Prediction Module (CDPM) to first predict a coarse dose map and then utilize discrete wavelet transform to decompose the coarse dose map into a low-frequency subband and three high?frequency subbands. There is a notable difference between the coarse predicted results and ground truth in high?frequency subbands. Therefore, we design a diffusion-based module called High-Frequency Refinement Module (HFRM) that performs diffusion operation in the high?frequency components of the dose map instead of the original dose map. Extensive experiments on an in-house dataset verify the effectiveness of our approach.
Abstract:Semi-supervised learning (SSL) has shown notable potential in relieving the heavy demand of dense prediction tasks on large-scale well-annotated datasets, especially for the challenging multi-organ segmentation (MoS). However, the prevailing class-imbalance problem in MoS, caused by the substantial variations in organ size, exacerbates the learning difficulty of the SSL network. To alleviate this issue, we present a two-phase semi-supervised network (BSR-Net) with balanced subclass regularization for MoS. Concretely, in Phase I, we introduce a class-balanced subclass generation strategy based on balanced clustering to effectively generate multiple balanced subclasses from original biased ones according to their pixel proportions. Then, in Phase II, we design an auxiliary subclass segmentation (SCS) task within the multi-task framework of the main MoS task. The SCS task contributes a balanced subclass regularization to the main MoS task and transfers unbiased knowledge to the MoS network, thus alleviating the influence of the class-imbalance problem. Extensive experiments conducted on two publicly available datasets, i.e., the MICCAI FLARE 2022 dataset and the WORD dataset, verify the superior performance of our method compared with other methods.
Abstract:Radiation therapy is the mainstay treatment for cervical cancer, and its ultimate goal is to ensure the planning target volume (PTV) reaches the prescribed dose while reducing dose deposition of organs-at-risk (OARs) as much as possible. To achieve these clinical requirements, the medical physicist needs to manually tweak the radiotherapy plan repeatedly in a trial-anderror manner until finding the optimal one in the clinic. However, such trial-and-error processes are quite time-consuming, and the quality of plans highly depends on the experience of the medical physicist. In this paper, we propose an end-to-end Attentionbased Residual Adversarial Network with deep supervision, namely ARANet, to automatically predict the 3D dose distribution of cervical cancer. Specifically, given the computer tomography (CT) images and their corresponding segmentation masks of PTV and OARs, ARANet employs a prediction network to generate the dose maps. We also utilize a multi-scale residual attention module and deep supervision mechanism to enforce the prediction network to extract more valuable dose features while suppressing irrelevant information. Our proposed method is validated on an in-house dataset including 54 cervical cancer patients, and experimental results have demonstrated its obvious superiority compared to other state-of-the-art methods.
Abstract:Semi-supervised learning is a sound measure to relieve the strict demand of abundant annotated datasets, especially for challenging multi-organ segmentation . However, most existing SSL methods predict pixels in a single image independently, ignoring the relations among images and categories. In this paper, we propose a two-stage Dual Contrastive Learning Network for semi-supervised MoS, which utilizes global and local contrastive learning to strengthen the relations among images and classes. Concretely, in Stage 1, we develop a similarity-guided global contrastive learning to explore the implicit continuity and similarity among images and learn global context. Then, in Stage 2, we present an organ-aware local contrastive learning to further attract the class representations. To ease the computation burden, we introduce a mask center computation algorithm to compress the category representations for local contrastive learning. Experiments conducted on the public 2017 ACDC dataset and an in-house RC-OARs dataset has demonstrated the superior performance of our method.
Abstract:Radiotherapy is a primary treatment for cancers with the aim of applying sufficient radiation dose to the planning target volume (PTV) while minimizing dose hazards to the organs at risk (OARs). Convolutional neural networks (CNNs) have automated the radiotherapy plan-making by predicting the dose maps. However, current CNN-based methods ignore the remarkable dose difference in the dose map, i.e., high dose value in the interior PTV while low value in the exterior PTV, leading to a suboptimal prediction. In this paper, we propose a triplet-constraint transformer (TCtrans) with multi-scale refinement to predict the high-quality dose distribution. Concretely, a novel PTV-guided triplet constraint is designed to refine dose feature representations in the interior and exterior PTV by utilizing the explicit geometry of PTV. Furthermore, we introduce a multi-scale refinement (MSR) module to effectively fulfill the triplet constraint in different decoding layers with multiple scales. Besides, a transformer encoder is devised to learn the important global dosimetric knowledge. Experiments on a clinical cervical cancer dataset demonstrate the superiority of our method.
Abstract:Deep learning (DL) has successfully automated dose distribution prediction in radiotherapy planning, enhancing both efficiency and quality. However, existing methods suffer from the over-smoothing problem for their commonly used L1 or L2 loss with posterior average calculations. To alleviate this limitation, we propose a diffusion model-based method (DiffDose) for predicting the radiotherapy dose distribution of cancer patients. Specifically, the DiffDose model contains a forward process and a reverse process. In the forward process, DiffDose transforms dose distribution maps into pure Gaussian noise by gradually adding small noise and a noise predictor is simultaneously trained to estimate the noise added at each timestep. In the reverse process, it removes the noise from the pure Gaussian noise in multiple steps with the well-trained noise predictor and finally outputs the predicted dose distribution maps...
Abstract:Currently, deep learning (DL) has achieved the automatic prediction of dose distribution in radiotherapy planning, enhancing its efficiency and quality. However, existing methods suffer from the over-smoothing problem for their commonly used L_1 or L_2 loss with posterior average calculations. To alleviate this limitation, we innovatively introduce a diffusion-based dose prediction (DiffDP) model for predicting the radiotherapy dose distribution of cancer patients. Specifically, the DiffDP model contains a forward process and a reverse process. In the forward process, DiffDP gradually transforms dose distribution maps into Gaussian noise by adding small noise and trains a noise predictor to predict the noise added in each timestep. In the reverse process, it removes the noise from the original Gaussian noise in multiple steps with the well-trained noise predictor and finally outputs the predicted dose distribution map. To ensure the accuracy of the prediction, we further design a structure encoder to extract anatomical information from patient anatomy images and enable the noise predictor to be aware of the dose constraints within several essential organs, i.e., the planning target volume and organs at risk. Extensive experiments on an in-house dataset with 130 rectum cancer patients demonstrate the s