Abstract:Localization of the craniofacial landmarks from lateral cephalograms is a fundamental task in cephalometric analysis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Cephalometric Landmark Detection (CL-Detection)" dataset, which is the largest publicly available and comprehensive dataset for cephalometric landmark detection. This multi-center and multi-vendor dataset includes 600 lateral X-ray images with 38 landmarks acquired with different equipment from three medical centers. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go for cephalometric landmark detection. Following the 2023 MICCAI CL-Detection Challenge, we report the results of the top ten research groups using deep learning methods. Results show that the best methods closely approximate the expert analysis, achieving a mean detection rate of 75.719% and a mean radial error of 1.518 mm. While there is room for improvement, these findings undeniably open the door to highly accurate and fully automatic location of craniofacial landmarks. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for the community to benchmark future algorithm developments at https://cl-detection2023.grand-challenge.org/.
Abstract:Reconstructing 3D human bodies from realistic motion sequences remains a challenge due to pervasive and complex occlusions. Current methods struggle to capture the dynamics of occluded body parts, leading to model penetration and distorted motion. RemoCap leverages Spatial Disentanglement (SD) and Motion Disentanglement (MD) to overcome these limitations. SD addresses occlusion interference between the target human body and surrounding objects. It achieves this by disentangling target features along the dimension axis. By aligning features based on their spatial positions in each dimension, SD isolates the target object's response within a global window, enabling accurate capture despite occlusions. The MD module employs a channel-wise temporal shuffling strategy to simulate diverse scene dynamics. This process effectively disentangles motion features, allowing RemoCap to reconstruct occluded parts with greater fidelity. Furthermore, this paper introduces a sequence velocity loss that promotes temporal coherence. This loss constrains inter-frame velocity errors, ensuring the predicted motion exhibits realistic consistency. Extensive comparisons with state-of-the-art (SOTA) methods on benchmark datasets demonstrate RemoCap's superior performance in 3D human body reconstruction. On the 3DPW dataset, RemoCap surpasses all competitors, achieving the best results in MPVPE (81.9), MPJPE (72.7), and PA-MPJPE (44.1) metrics. Codes are available at https://wanghongsheng01.github.io/RemoCap/.