Abstract:Answer Set Programming (ASP) is a prominent rule-based language for knowledge representation and reasoning with roots in logic programming and non-monotonic reasoning. The aim to capture the essence of removing (ir)relevant details in ASP programs led to the investigation of different notions, from strong persistence (SP) forgetting, to faithful abstractions, and, recently, strong simplifications, where the latter two can be seen as relaxed and strengthened notions of forgetting, respectively. Although it was observed that these notions are related, especially given that they have characterizations through the semantics for strong equivalence, it remained unclear whether they can be brought together. In this work, we bridge this gap by introducing a novel relativized equivalence notion, which is a relaxation of the recent simplification notion, that is able to capture all related notions from the literature. We provide necessary and sufficient conditions for relativized simplifiability, which shows that the challenging part is for when the context programs do not contain all the atoms to remove. We then introduce an operator that combines projection and a relaxation of (SP)-forgetting to obtain the relativized simplifications. We furthermore present complexity results that complete the overall picture.
Abstract:Humans are capable of abstracting away irrelevant details when studying problems. This is especially noticeable for problems over grid-cells, as humans are able to disregard certain parts of the grid and focus on the key elements important for the problem. Recently, the notion of abstraction has been introduced for Answer Set Programming (ASP), a knowledge representation and reasoning paradigm widely used in problem solving, with the potential to understand the key elements of a program that play a role in finding a solution. The present paper takes this further and empowers abstraction to deal with structural aspects, and in particular with hierarchical abstraction over the domain. We focus on obtaining the reasons for unsolvability of problems on grids, and show the possibility to automatically achieve human-like abstractions that distinguish only the relevant part of the grid. A user study on abstract explanations confirms the similarity of the focus points in machine vs. human explanations and reaffirms the challenge of employing abstraction to obtain machine explanations.
Abstract:ASP programs are a convenient tool for problem solving, whereas with large problem instances the size of the state space can be prohibitive. We consider abstraction as a means of over-approximation and introduce a method to automatically abstract (possibly non-ground) ASP programs that preserves their structure, while reducing the size of the problem. One particular application case is the problem of defining declarative policies for reactive agents and reasoning about them, which we illustrate on examples.
Abstract:We describe a representation in a high-level transition system for policies that express a reactive behavior for the agent. We consider a target decision component that figures out what to do next and an (online) planning capability to compute the plans needed to reach these targets. Our representation allows one to analyze the flow of executing the given reactive policy, and to determine whether it works as expected. Additionally, the flexibility of the representation opens a range of possibilities for designing behaviors.