Abstract:Photoacoustic imaging (PAI) combines the high contrast of optical imaging with the deep penetration depth of ultrasonic imaging, showing great potential in cerebrovascular disease detection. However, the ultrasonic wave suffers strong attenuation and multi-scattering when it passes through the skull tissue, resulting in the distortion of the collected photoacoustic (PA) signal. In this paper, inspired by the principles of deep learning and non-line-of-sight (NLOS) imaging, we propose an image reconstruction framework named HDN (Hybrid Deep-learning and Non-line-of-sight), which consists of the signal extraction part and difference utilization part. The signal extraction part is used to correct the distorted signal and reconstruct an initial image. The difference utilization part is used to make further use of the signal difference between the distorted signal and corrected signal, reconstructing the residual image between the initial image and the target image. The test results on a PA digital brain simulation dataset show that compared with the traditional delay-and-sum (DAS) method and deep-learning-based method, HDN achieved superior performance in both signal correction and image reconstruction. Specifically for the SSIM index, the HDN reached 0.606 in imaging results, compared to 0.154 for the DAS method and 0.307 for the deep-learning-based method.
Abstract:Photoacoustic (PA) imaging technology combines the advantages of optical imaging and ultrasound imaging, showing great potential in biomedical applications. Many preclinical studies and clinical applications urgently require fast, high-quality, low-cost and portable imaging system. Translating advanced image reconstruction algorithms into hardware implementations is highly desired. However, existing iterative PA image reconstructions, although exhibit higher accuracy than delay-and-sum algorithm, suffer from high computational cost. In this paper, we introduce a model-based hardware acceleration architecture based on superposed Wave (s-Wave) for palm-size PA tomography (palm-PAT), aiming at enhancing both the speed and performance of image reconstruction at a much lower system cost. To achieve this, we propose an innovative data reuse method that significantly reduces hardware storage resource consumption. We conducted experiments by FPGA implementation of the algorithm, using both phantoms and in vivo human finger data to verify the feasibility of the proposed method. The results demonstrate that our proposed architecture can substantially reduce system cost while maintaining high imaging performance. The hardware-accelerated implementation of the model-based algorithm achieves a speedup of up to approximately 270 times compared to the CPU, while the corresponding energy efficiency ratio is improved by more than 2700 times.
Abstract:In practical applications within the human body, it is often challenging to fully encompass the target tissue or organ, necessitating the use of limited-view arrays, which can lead to the loss of crucial information. Addressing the reconstruction of photoacoustic sensor signals in limited-view detection spaces has become a focal point of current research. In this study, we introduce a self-supervised network termed HIgh-quality Self-supervised neural representation (HIS), which tackles the inverse problem of photoacoustic imaging to reconstruct high-quality photoacoustic images from sensor data acquired under limited viewpoints. We regard the desired reconstructed photoacoustic image as an implicit continuous function in 2D image space, viewing the pixels of the image as sparse discrete samples. The HIS's objective is to learn the continuous function from limited observations by utilizing a fully connected neural network combined with Fourier feature position encoding. By simply minimizing the error between the network's predicted sensor data and the actual sensor data, HIS is trained to represent the observed continuous model. The results indicate that the proposed HIS model offers superior image reconstruction quality compared to three commonly used methods for photoacoustic image reconstruction.
Abstract:Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area.
Abstract:Photoacoustic imaging (PAI) has been applied to many biomedical applications over the past decades. However, the received PA signal usually suffers from poor signal-to-noise ratio (SNR). Conventional solution of employing higher-power laser, or doing long-time signal averaging, may raise the system cost, time consumption, and tissue damage. Another strategy is de-noising algorithm design. In this paper, we propose a new de-noising method, termed gradient-based adaptive wavelet de-noising, which sets the energy gradient mutation point of low-frequency wavelet components as the threshold. We conducted simulation, ex vivo and in vivo experiments to validate the performance of the algorithm. The quality of de-noised PA image/signal by our proposed algorithm has improved by 20%-40%, in comparison to the traditional signal denoising algorithms, which produces better contrast and clearer details. The proposed de-noising method provides potential to improve the SNR of PA signal under single-shot low-power laser illumination for biomedical applications in vivo.
Abstract:Photoacoustic imaging is a promising imaging technique for human brain due to its high sensitivity and functional imaging ability. However, the skull would cause strong attenuation and distortion to the photoacoustic signals, which makes non-invasive transcranial imaging difficult. In this work, the temporal bone is selected as an imaging window to minimize the influence of the skull. Moreover, non-line-of-sight photoacoustic imaging is introduced to enhance the field of view, where the skull is considered as a reflector. Simulation studies are carried out to show that the image quality can be improved with reflected signal considered.