Abstract:Photoacoustic (PA) imaging technology combines the advantages of optical imaging and ultrasound imaging, showing great potential in biomedical applications. Many preclinical studies and clinical applications urgently require fast, high-quality, low-cost and portable imaging system. Translating advanced image reconstruction algorithms into hardware implementations is highly desired. However, existing iterative PA image reconstructions, although exhibit higher accuracy than delay-and-sum algorithm, suffer from high computational cost. In this paper, we introduce a model-based hardware acceleration architecture based on superposed Wave (s-Wave) for palm-size PA tomography (palm-PAT), aiming at enhancing both the speed and performance of image reconstruction at a much lower system cost. To achieve this, we propose an innovative data reuse method that significantly reduces hardware storage resource consumption. We conducted experiments by FPGA implementation of the algorithm, using both phantoms and in vivo human finger data to verify the feasibility of the proposed method. The results demonstrate that our proposed architecture can substantially reduce system cost while maintaining high imaging performance. The hardware-accelerated implementation of the model-based algorithm achieves a speedup of up to approximately 270 times compared to the CPU, while the corresponding energy efficiency ratio is improved by more than 2700 times.
Abstract:Semi-supervised video object segmentation is a fundamental yet Challenging task in computer vision. Embedding matching based CFBI series networks have achieved promising results by foreground-background integration approach. Despite its superior performance, these works exhibit distinct shortcomings, especially the false predictions caused by little appearance instances in first frame, even they could easily be recognized by previous frame. Moreover, they suffer from object's occlusion and error drifts. In order to overcome the shortcomings , we propose Collaborative Attention Memory Network with an enhanced segmentation head. We introduce a object context scheme that explicitly enhances the object information, which aims at only gathering the pixels that belong to the same category as a given pixel as its context. Additionally, a segmentation head with Feature Pyramid Attention(FPA) module is adopted to perform spatial pyramid attention structure on high-level output. Furthermore, we propose an ensemble network to combine STM network with all these new refined CFBI network. Finally, we evaluated our approach on the 2021 Youtube-VOS challenge where we obtain 6th place with an overall score of 83.5\%.