Abstract:Large Language Models (LLMs) show potential for medical applications but often lack specialized clinical knowledge. Retrieval Augmented Generation (RAG) allows customization with domain-specific information, making it suitable for healthcare. This study evaluates the accuracy, consistency, and safety of RAG models in determining fitness for surgery and providing preoperative instructions. We developed LLM-RAG models using 35 local and 23 international preoperative guidelines and tested them against human-generated responses. A total of 3,682 responses were evaluated. Clinical documents were processed using Llamaindex, and 10 LLMs, including GPT3.5, GPT4, and Claude-3, were assessed. Fourteen clinical scenarios were analyzed, focusing on seven aspects of preoperative instructions. Established guidelines and expert judgment were used to determine correct responses, with human-generated answers serving as comparisons. The LLM-RAG models generated responses within 20 seconds, significantly faster than clinicians (10 minutes). The GPT4 LLM-RAG model achieved the highest accuracy (96.4% vs. 86.6%, p=0.016), with no hallucinations and producing correct instructions comparable to clinicians. Results were consistent across both local and international guidelines. This study demonstrates the potential of LLM-RAG models for preoperative healthcare tasks, highlighting their efficiency, scalability, and reliability.
Abstract:Large Language Models (LLMs) have significantly advanced healthcare innovation on generation capabilities. However, their application in real clinical settings is challenging due to potential deviations from medical facts and inherent biases. In this work, we develop an augmented LLM framework, KG-Rank, which leverages a medical knowledge graph (KG) with ranking and re-ranking techniques, aiming to improve free-text question-answering (QA) in the medical domain. Specifically, upon receiving a question, we initially retrieve triplets from a medical KG to gather factual information. Subsequently, we innovatively apply ranking methods to refine the ordering of these triplets, aiming to yield more precise answers. To the best of our knowledge, KG-Rank is the first application of ranking models combined with KG in medical QA specifically for generating long answers. Evaluation of four selected medical QA datasets shows that KG-Rank achieves an improvement of over 18% in the ROUGE-L score. Moreover, we extend KG-Rank to open domains, where it realizes a 14% improvement in ROUGE-L, showing the effectiveness and potential of KG-Rank.
Abstract:Background: Cognitive biases in clinical decision-making significantly contribute to errors in diagnosis and suboptimal patient outcomes. Addressing these biases presents a formidable challenge in the medical field. This study explores the role of large language models (LLMs) in mitigating these biases through the utilization of a multi-agent framework. We simulate the clinical decision-making processes through multi-agent conversation and evaluate its efficacy in improving diagnostic accuracy. Methods: A total of 16 published and unpublished case reports where cognitive biases have resulted in misdiagnoses were identified from the literature. In the multi-agent system, we leveraged GPT-4 Turbo to facilitate interactions among four simulated agents to replicate clinical team dynamics. Each agent has a distinct role: 1) To make the initial and final diagnosis after considering the discussions, 2) The devil's advocate and correct confirmation and anchoring bias, 3) The tutor and facilitator of the discussion to reduce premature closure bias, and 4) To record and summarize the findings. A total of 80 simulations were evaluated for the accuracy of initial diagnosis, top differential diagnosis and final two differential diagnoses. Findings: In a total of 80 responses evaluating both initial and final diagnoses, the initial diagnosis had an accuracy of 0% (0/80), but following multi-agent discussions, the accuracy for the top differential diagnosis increased to 71.3% (57/80), and for the final two differential diagnoses, to 80.0% (64/80). The system demonstrated an ability to reevaluate and correct misconceptions, even in scenarios with misleading initial investigations. Interpretation: The LLM-driven multi-agent conversation system shows promise in enhancing diagnostic accuracy in diagnostically challenging medical scenarios.