Abstract:Mental health conversational agents (a.k.a. chatbots) are widely studied for their potential to offer accessible support to those experiencing mental health challenges. Previous surveys on the topic primarily consider papers published in either computer science or medicine, leading to a divide in understanding and hindering the sharing of beneficial knowledge between both domains. To bridge this gap, we conduct a comprehensive literature review using the PRISMA framework, reviewing 534 papers published in both computer science and medicine. Our systematic review reveals 136 key papers on building mental health-related conversational agents with diverse characteristics of modeling and experimental design techniques. We find that computer science papers focus on LLM techniques and evaluating response quality using automated metrics with little attention to the application while medical papers use rule-based conversational agents and outcome metrics to measure the health outcomes of participants. Based on our findings on transparency, ethics, and cultural heterogeneity in this review, we provide a few recommendations to help bridge the disciplinary divide and enable the cross-disciplinary development of mental health conversational agents.
Abstract:Background: While deep learning technology, which has the capability of obtaining latent representations based on large-scale data, can be a potential solution for the discovery of a novel aging biomarker, existing deep learning methods for biological age estimation usually depend on chronological ages and lack of consideration of mortality and morbidity that are the most significant outcomes of aging. Methods: This paper proposes a novel deep learning model to learn latent representations of biological aging in regard to subjects' morbidity and mortality. The model utilizes health check-up data in addition to morbidity and mortality information to learn the complex relationships between aging and measured clinical attributes. Findings: The proposed model is evaluated on a large dataset of general populations compared with KDM and other learning-based models. Results demonstrate that biological ages obtained by the proposed model have superior discriminability of subjects' morbidity and mortality.