Abstract:With the increasingly widespread application of machine learning, how to strike a balance between protecting the privacy of data and algorithm parameters and ensuring the verifiability of machine learning has always been a challenge. This study explores the intersection of reinforcement learning and data privacy, specifically addressing the Multi-Armed Bandit (MAB) problem with the Upper Confidence Bound (UCB) algorithm. We introduce zkUCB, an innovative algorithm that employs the Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARKs) to enhance UCB. zkUCB is carefully designed to safeguard the confidentiality of training data and algorithmic parameters, ensuring transparent UCB decision-making. Experiments highlight zkUCB's superior performance, attributing its enhanced reward to judicious quantization bit usage that reduces information entropy in the decision-making process. zkUCB's proof size and verification time scale linearly with the execution steps of zkUCB. This showcases zkUCB's adept balance between data security and operational efficiency. This approach contributes significantly to the ongoing discourse on reinforcing data privacy in complex decision-making processes, offering a promising solution for privacy-sensitive applications.
Abstract:Transformer model architectures have become an indispensable staple in deep learning lately for their effectiveness across a range of tasks. Recently, a surge of "X-former" models have been proposed which improve upon the original Transformer architecture. However, most of these variants make changes only around the quadratic time and memory complexity of self-attention, i.e. the dot product between the query and the key. What's more, they are calculate solely in Euclidean space. In this work, we propose a novel Transformer with Hyperbolic Geometry (THG) model, which take the advantage of both Euclidean space and Hyperbolic space. THG makes improvements in linear transformations of self-attention, which are applied on the input sequence to get the query and the key, with the proposed hyperbolic linear. Extensive experiments on sequence labeling task, machine reading comprehension task and classification task demonstrate the effectiveness and generalizability of our model. It also demonstrates THG could alleviate overfitting.