Abstract:Deep Neural Networks (DNNs) have been shown to be vulnerable to adversarial examples. While numerous successful adversarial attacks have been proposed, defenses against these attacks remain relatively understudied. Existing defense approaches either focus on negating the effects of perturbations caused by the attacks to restore the DNNs' original predictions or use a secondary model to detect adversarial examples. However, these methods often become ineffective due to the continuous advancements in attack techniques. We propose a novel universal and lightweight method to detect adversarial examples by analyzing the layer outputs of DNNs. Through theoretical justification and extensive experiments, we demonstrate that our detection method is highly effective, compatible with any DNN architecture, and applicable across different domains, such as image, video, and audio.
Abstract:Artificial Intelligence (AI) has demonstrated significant potential in automating various medical imaging tasks, which could soon become routine in clinical practice for disease diagnosis, prognosis, treatment planning, and post-treatment surveillance. However, the privacy concerns surrounding patient data present a major barrier to the widespread adoption of AI in medical imaging, as large, diverse training datasets are essential for developing accurate, generalizable, and robust Artificial intelligence models. Federated Learning (FL) offers a solution that enables organizations to train AI models collaboratively without sharing sensitive data. federated learning exchanges model training information, such as gradients, between the participating sites. Despite its promise, federated learning is still in its developmental stages and faces several challenges. Notably, sensitive information can still be inferred from the gradients shared during model training. Quantifying AI models' uncertainty is vital due to potential data distribution shifts post-deployment, which can affect model performance. Uncertainty quantification (UQ) in FL is particularly challenging due to data heterogeneity across participating sites. This review provides a comprehensive examination of FL, privacy-preserving FL (PPFL), and UQ in FL. We identify key gaps in current FL methodologies and propose future research directions to enhance data privacy and trustworthiness in medical imaging applications.
Abstract:Machine learning (ML) and Artificial Intelligence (AI) have fueled remarkable advancements, particularly in healthcare. Within medical imaging, ML models hold the promise of improving disease diagnoses, treatment planning, and post-treatment monitoring. Various computer vision tasks like image classification, object detection, and image segmentation are poised to become routine in clinical analysis. However, privacy concerns surrounding patient data hinder the assembly of large training datasets needed for developing and training accurate, robust, and generalizable models. Federated Learning (FL) emerges as a compelling solution, enabling organizations to collaborate on ML model training by sharing model training information (gradients) rather than data (e.g., medical images). FL's distributed learning framework facilitates inter-institutional collaboration while preserving patient privacy. However, FL, while robust in privacy preservation, faces several challenges. Sensitive information can still be gleaned from shared gradients that are passed on between organizations during model training. Additionally, in medical imaging, quantifying model confidence\uncertainty accurately is crucial due to the noise and artifacts present in the data. Uncertainty estimation in FL encounters unique hurdles due to data heterogeneity across organizations. This paper offers a comprehensive review of FL, privacy preservation, and uncertainty estimation, with a focus on medical imaging. Alongside a survey of current research, we identify gaps in the field and suggest future directions for FL research to enhance privacy and address noisy medical imaging data challenges.
Abstract:Developing accurate machine learning models for oncology requires large-scale, high-quality multimodal datasets. However, creating such datasets remains challenging due to the complexity and heterogeneity of medical data. To address this challenge, we introduce HoneyBee, a scalable modular framework for building multimodal oncology datasets that leverages foundational models to generate representative embeddings. HoneyBee integrates various data modalities, including clinical records, imaging data, and patient outcomes. It employs data preprocessing techniques and transformer-based architectures to generate embeddings that capture the essential features and relationships within the raw medical data. The generated embeddings are stored in a structured format using Hugging Face datasets and PyTorch dataloaders for accessibility. Vector databases enable efficient querying and retrieval for machine learning applications. We demonstrate the effectiveness of HoneyBee through experiments assessing the quality and representativeness of the embeddings. The framework is designed to be extensible to other medical domains and aims to accelerate oncology research by providing high-quality, machine learning-ready datasets. HoneyBee is an ongoing open-source effort, and the code, datasets, and models are available at the project repository.
Abstract:Adversarial machine learning attacks on video action recognition models is a growing research area and many effective attacks were introduced in recent years. These attacks show that action recognition models can be breached in many ways. Hence using these models in practice raises significant security concerns. However, there are very few works which focus on defending against or detecting attacks. In this work, we propose a novel universal detection method which is compatible with any action recognition model. In our extensive experiments, we show that our method consistently detects various attacks against different target models with high true positive rates while satisfying very low false positive rates. Tested against four state-of-the-art attacks targeting four action recognition models, the proposed detector achieves an average AUC of 0.911 over 16 test cases while the best performance achieved by the existing detectors is 0.645 average AUC. This 41.2% improvement is enabled by the robustness of the proposed detector to varying attack methods and target models. The lowest AUC achieved by our detector across the 16 test cases is 0.837 while the competing detector's performance drops as low as 0.211. We also show that the proposed detector is robust to varying attack strengths. In addition, we analyze our method's real-time performance with different hardware setups to demonstrate its potential as a practical defense mechanism.
Abstract:The advancements in data acquisition, storage, and processing techniques have resulted in the rapid growth of heterogeneous medical data. Integrating radiological scans, histopathology images, and molecular information with clinical data is essential for developing a holistic understanding of the disease and optimizing treatment. The need for integrating data from multiple sources is further pronounced in complex diseases such as cancer for enabling precision medicine and personalized treatments. This work proposes Multimodal Integration of Oncology Data System (MINDS) - a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources such as the Cancer Research Data Commons (CRDC) into an interconnected, patient-centric framework. MINDS offers an interface for exploring relationships across data types and building cohorts for developing large-scale multimodal machine learning models. By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability to uncover diagnostic and prognostic insights and enable evidence-based personalized care. MINDS tracks granular end-to-end data provenance, ensuring reproducibility and transparency. The cloud-native architecture of MINDS can handle exponential data growth in a secure, cost-optimized manner while ensuring substantial storage optimization, replication avoidance, and dynamic access capabilities. Auto-scaling, access controls, and other mechanisms guarantee pipelines' scalability and security. MINDS overcomes the limitations of existing biomedical data silos via an interoperable metadata-driven approach that represents a pivotal step toward the future of oncology data integration.
Abstract:Radio frequency (RF) fingerprinting is a tool which allows for authentication by utilizing distinct and random distortions in a received signal based on characteristics of the transmitter. We introduce a deep learning-based authentication method for a novel RF fingerprinting system called Physically Unclonable Wireless Systems (PUWS). An element of PUWS is based on the concept of Chaotic Antenna Arrays (CAAs) that can be cost effectively manufactured by utilizing mask-free laser-enhanced direct print additive manufacturing (LE-DPAM). In our experiments, using simulation data of 300 CAAs each exhibiting 4 antenna elements, we test 3 different convolutional neural network (CNN) architectures under different channel conditions and compare their authentication performance to the current state-of-the-art RF fingerprinting authentication methods.
Abstract:Anomaly detection in videos is an important computer vision problem with various applications including automated video surveillance. Although adversarial attacks on image understanding models have been heavily investigated, there is not much work on adversarial machine learning targeting video understanding models and no previous work which focuses on video anomaly detection. To this end, we investigate an adversarial machine learning attack against video anomaly detection systems, that can be implemented via an easy-to-perform cyber-attack. Since surveillance cameras are usually connected to the server running the anomaly detection model through a wireless network, they are prone to cyber-attacks targeting the wireless connection. We demonstrate how Wi-Fi deauthentication attack, a notoriously easy-to-perform and effective denial-of-service (DoS) attack, can be utilized to generate adversarial data for video anomaly detection systems. Specifically, we apply several effects caused by the Wi-Fi deauthentication attack on video quality (e.g., slow down, freeze, fast forward, low resolution) to the popular benchmark datasets for video anomaly detection. Our experiments with several state-of-the-art anomaly detection models show that the attackers can significantly undermine the reliability of video anomaly detection systems by causing frequent false alarms and hiding physical anomalies from the surveillance system.
Abstract:While anomaly detection in time series has been an active area of research for several years, most recent approaches employ an inadequate evaluation criterion leading to an inflated F1 score. We show that a rudimentary Random Guess method can outperform state-of-the-art detectors in terms of this popular but faulty evaluation criterion. In this work, we propose a proper evaluation metric that measures the timeliness and precision of detecting sequential anomalies. Moreover, most existing approaches are unable to capture temporal features from long sequences. Self-attention based approaches, such as transformers, have been demonstrated to be particularly efficient in capturing long-range dependencies while being computationally efficient during training and inference. We also propose an efficient transformer approach for anomaly detection in time series and extensively evaluate our proposed approach on several popular benchmark datasets.
Abstract:While video action recognition has been an active area of research for several years, zero-shot action recognition has only recently started gaining traction. However, there is a lack of a formal definition for the zero-shot learning paradigm leading to uncertainty about classes that can be considered as previously unseen. In this work, we take a new comprehensive look at the inductive zero-shot action recognition problem from a realistic standpoint. Specifically, we advocate for a concrete formulation for zero-shot action recognition that avoids an exact overlap between the training and testing classes and also limits the intra-class variance; and propose a novel end-to-end trained transformer model which is capable of capturing long range spatiotemporal dependencies efficiently, contrary to existing approaches which use 3D-CNNs. The proposed approach outperforms the existing state-of-the-art algorithms in many settings on all benchmark datasets by a wide margin.