Abstract:Segmentation of organs of interest in medical CT images is beneficial for diagnosis of diseases. Though recent methods based on Fully Convolutional Neural Networks (F-CNNs) have shown success in many segmentation tasks, fusing features from images with different scales is still a challenge: (1) Due to the lack of spatial awareness, F-CNNs share the same weights at different spatial locations. (2) F-CNNs can only obtain surrounding information through local receptive fields. To address the above challenge, we propose a new segmentation framework based on attention mechanisms, named MFA-Net (Multi-Scale Feature Fusion Attention Network). The proposed framework can learn more meaningful feature maps among multiple scales and result in more accurate automatic segmentation. We compare our proposed MFA-Net with SOTA methods on two 2D liver CT datasets. The experimental results show that our MFA-Net produces more precise segmentation on images with different scales.
Abstract:In the era of 6G, featuring compelling visions of intelligent transportation system, digital twins, remote surveillance is poised to become a ubiquitous practice. The substantial data volume and frequent updates present challenges in wireless networks. To address this, we propose a novel agent-driven generative semantic communication (A-GSC) framework based on reinforcement learning. In contrast to the existing research on semantic communication (SemCom), which mainly focuses on semantic compression or semantic sampling, we seamlessly cascade both together by jointly considering the intrinsic attributes of source information and the contextual information regarding the task. Notably, the introduction of the generative artificial intelligence (GAI) enables the independent design of semantic encoders and decoders. In this work, we develop an agent-assisted semantic encoder leveraging the knowledge based soft actor-critic algorithm, which can track the semantic changes, channel condition, and sampling intervals, so as to perform adaptive semantic sampling. Accordingly, we design a semantic decoder with both predictive and generative capabilities, which consists of two tailored modules. Moreover, the effectiveness of the designed models has been verified based on the dataset generated from CDNet2014, and the performance gain of the overall A-GSC framework in both energy saving and reconstruction accuracy have been demonstrated.
Abstract:Joint network topology inference represents a canonical problem of jointly learning multiple graph Laplacian matrices from heterogeneous graph signals. In such a problem, a widely employed assumption is that of a simple common component shared among multiple networks. However, in practice, a more intricate topological pattern, comprising simultaneously of sparse, homogeneity and heterogeneity components, would exhibit in multiple networks. In this paper, we propose a general graph estimator based on a novel structured fusion regularization that enables us to jointly learn multiple graph Laplacian matrices with such complex topological patterns, and enjoys both high computational efficiency and rigorous theoretical guarantee. Moreover, in the proposed regularization term, the topological pattern among networks is characterized by a Gram matrix, endowing our graph estimator with the ability of flexible modelling different types of topological patterns by different choices of the Gram matrix. Computationally, the regularization term, coupling the parameters together, makes the formulated optimization problem intractable and thus, we develop a computationally-scalable algorithm based on the alternating direction method of multipliers (ADMM) to solve it efficiently. Theoretically, we provide a theoretical analysis of the proposed graph estimator, which establishes a non-asymptotic bound of the estimation error under the high-dimensional setting and reflects the effect of several key factors on the convergence rate of our algorithm. Finally, the superior performance of the proposed method is illustrated through simulated and real data examples.