Abstract:Remote sensing image change detection (RSCD) is crucial for monitoring dynamic surface changes, with applications ranging from environmental monitoring to disaster assessment. While traditional CNN-based methods have improved detection accuracy, they often suffer from high computational complexity and large parameter counts, limiting their use in resource-constrained environments. To address these challenges, we propose a Lightweight remote sensing Change Detection Network (LCD-Net in short) that reduces model size and computational cost while maintaining high detection performance. LCD-Net employs MobileNetV2 as the encoder to efficiently extract features from bitemporal images. A Temporal Interaction and Fusion Module (TIF) enhances the interaction between bitemporal features, improving temporal context awareness. Additionally, the Feature Fusion Module (FFM) aggregates multiscale features to better capture subtle changes while suppressing background noise. The Gated Mechanism Module (GMM) in the decoder further enhances feature learning by dynamically adjusting channel weights, emphasizing key change regions. Experiments on LEVIR-CD+, SYSU, and S2Looking datasets show that LCD-Net achieves competitive performance with just 2.56M parameters and 4.45G FLOPs, making it well-suited for real-time applications in resource-limited settings. The code is available at https://github.com/WenyuLiu6/LCD-Net.
Abstract:Unsupervised graph-level anomaly detection (UGAD) has garnered increasing attention in recent years due to its significance. However, most existing methods only rely on traditional graph neural networks to explore pairwise relationships but such kind of pairwise edges are not enough to describe multifaceted relationships involving anomaly. There is an emergency need to exploit node group information which plays a crucial role in UGAD. In addition, most previous works ignore the global underlying properties (e.g., hierarchy and power-law structure) which are common in real-world graph datasets and therefore are indispensable factors on UGAD task. In this paper, we propose a novel Dual Hyperbolic Contrastive Learning for Unsupervised Graph-Level Anomaly Detection (HC-GLAD in short). To exploit node group connections, we construct hypergraphs based on gold motifs and subsequently perform hypergraph convolution. Furthermore, to preserve the hierarchy of real-world graphs, we introduce hyperbolic geometry into this field and conduct both graph and hypergraph embedding learning in hyperbolic space with hyperboloid model. To the best of our knowledge, this is the first work to simultaneously apply hypergraph with node group connections and hyperbolic geometry into this field. Extensive experiments on several real world datasets of different fields demonstrate the superiority of HC-GLAD on UGAD task. The code is available at https://github.com/Yali-F/HC-GLAD.
Abstract:Existing Large Language Models (LLM) can invoke a variety of tools and APIs to complete complex tasks. The computer, as the most powerful and universal tool, could potentially be controlled directly by a trained LLM agent. Powered by the computer, we can hopefully build a more generalized agent to assist humans in various daily digital works. In this paper, we construct an environment for a Vision Language Model (VLM) agent to interact with a real computer screen. Within this environment, the agent can observe screenshots and manipulate the Graphics User Interface (GUI) by outputting mouse and keyboard actions. We also design an automated control pipeline that includes planning, acting, and reflecting phases, guiding the agent to continuously interact with the environment and complete multi-step tasks. Additionally, we construct the ScreenAgent Dataset, which collects screenshots and action sequences when completing a variety of daily computer tasks. Finally, we trained a model, ScreenAgent, which achieved computer control capabilities comparable to GPT-4V and demonstrated more precise UI positioning capabilities. Our attempts could inspire further research on building a generalist LLM agent. The code is available at \url{https://github.com/niuzaisheng/ScreenAgent}.