Abstract:Patent documents in the patent database (PatDB) are crucial for research, development, and innovation as they contain valuable technical information. However, PatDB presents a multifaceted challenge compared to publicly available preprocessed databases due to the intricate nature of the patent text and the inherent sparsity within the patent citation network. Although patent text analysis and citation analysis bring new opportunities to explore patent data mining, no existing work exploits the complementation of them. To this end, we propose a joint semantic-topological evolutionary graph learning approach (PatSTEG) to model the formation dynamics of patent citation networks. More specifically, we first create a real-world dataset of Chinese patents named CNPat and leverage its patent texts and citations to construct a patent citation network. Then, PatSTEG is modeled to study the evolutionary dynamics of patent citation formation by considering the semantic and topological information jointly. Extensive experiments are conducted on CNPat and public datasets to prove the superiority of PatSTEG over other state-of-the-art methods. All the results provide valuable references for patent literature research and technical exploration.
Abstract:Non alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease, which can be predicted accurately to prevent advanced fibrosis and cirrhosis. While, a liver biopsy, the gold standard for NAFLD diagnosis, is invasive, expensive, and prone to sampling errors. Therefore, non-invasive studies are extremely promising, yet they are still in their infancy due to the lack of comprehensive research data and intelligent methods for multi-modal data. This paper proposes a NAFLD diagnosis system (DeepFLDDiag) combining a comprehensive clinical dataset (FLDData) and a multi-modal learning based NAFLD prediction method (DeepFLD). The dataset includes over 6000 participants physical examinations, laboratory and imaging studies, extensive questionnaires, and facial images of partial participants, which is comprehensive and valuable for clinical studies. From the dataset, we quantitatively analyze and select clinical metadata that most contribute to NAFLD prediction. Furthermore, the proposed DeepFLD, a deep neural network model designed to predict NAFLD using multi-modal input, including metadata and facial images, outperforms the approach that only uses metadata. Satisfactory performance is also verified on other unseen datasets. Inspiringly, DeepFLD can achieve competitive results using only facial images as input rather than metadata, paving the way for a more robust and simpler non-invasive NAFLD diagnosis.
Abstract:We propose an end-to-end model to predict drug-drug interactions (DDIs) by employing graph-augmented convolutional networks. And this is implemented by combining graph CNN with an attentive pooling network to extract structural relations between drug pairs and make DDI predictions. The experiment results suggest a desirable performance achieving ROC at 0.988, F1-score at 0.956, and AUPR at 0.986. Besides, the model can tell how the two DDI drugs interact structurally by varying colored atoms. And this may be helpful for drug design during drug discovery.