Abstract:To achieve continuous massive data transmission with significantly reduced data payload, the users can adopt semantic communication techniques to compress the redundant information by transmitting semantic features instead. However, current works on semantic communication mainly focus on high compression ratio, neglecting the wireless channel effects including dynamic distortion and multi-user interference, which significantly limit the fidelity of semantic communication. To address this, this paper proposes a diffusion model (DM)-based channel enhancer (DMCE) for improving the performance of multi-user semantic communication, with the DM learning the particular data distribution of channel effects on the transmitted semantic features. In the considered system model, multiple users (such as road cameras) transmit semantic features of multi-source data to a receiver by applying the joint source-channel coding (JSCC) techniques, and the receiver fuses the semantic features from multiple users to complete specific tasks. Then, we propose DMCE to enhance the channel state information (CSI) estimation for improving the restoration of the received semantic features. Finally, the fusion results at the receiver are significantly enhanced, demonstrating a robust performance even under low signal-to-noise ratio (SNR) regimes, enabling the generation of effective object segmentation images. Extensive simulation results with a traffic scenario dataset show that the proposed scheme can improve the mean Intersection over Union (mIoU) by more than 25\% at low SNR regimes, compared with the benchmark schemes.
Abstract:This article studies the problem of image segmentation-based semantic communication in autonomous driving. In real traffic scenes, detecting the key objects (e.g., vehicles, pedestrians and obstacles) is more crucial than that of other objects to guarantee driving safety. Therefore, we propose a vehicular image segmentation-oriented semantic communication system, termed VIS-SemCom, where image segmentation features of important objects are transmitted to reduce transmission redundancy. First, to accurately extract image semantics, we develop a semantic codec based on Swin Transformer architecture, which expands the perceptual field thus improving the segmentation accuracy. Next, we propose a multi-scale semantic extraction scheme via assigning the number of Swin Transformer blocks for diverse resolution features, thus highlighting the important objects' accuracy. Furthermore, the importance-aware loss is invoked to emphasize the important objects, and an online hard sample mining (OHEM) strategy is proposed to handle small sample issues in the dataset. Experimental results demonstrate that the proposed VIS-SemCom can achieve a coding gain of nearly 6 dB with a 60% mean intersection over union (mIoU), reduce the transmitted data amount by up to 70% with a 60% mIoU, and improve the segmentation intersection over union (IoU) of important objects by 4%, compared to traditional transmission scheme.
Abstract:In the sixth generation (6G) era, intelligent machine network (IMN) applications, such as intelligent transportation, require collaborative machines with communication, sensing, and computation (CSC) capabilities. This article proposes an integrated communication, sensing, and computation (ICSAC) framework for 6G to achieve the reciprocity among CSC functions to enhance the reliability and latency of communication, accuracy and timeliness of sensing information acquisition, and privacy and security of computing to realize the IMN applications. Specifically, the sensing and communication functions can merge into unified platforms using the same transmit signals, and the acquired real-time sensing information can be exploited as prior information for intelligent algorithms to enhance the performance of communication networks. This is called the computing-empowered integrated sensing and communications (ISAC) reciprocity. Such reciprocity can further improve the performance of distributed computation with the assistance of networked sensing capability, which is named the sensing-empowered integrated communications and computation (ICAC) reciprocity. The above ISAC and ICAC reciprocities can enhance each other iteratively and finally lead to the ICSAC reciprocity. To achieve these reciprocities, we explore the potential enabling technologies for the ICSAC framework. Finally, we present the evaluation results of crucial enabling technologies to show the feasibility of the ICSAC framework.