Abstract:Chinese acupuncture practitioners primarily depend on muscle memory and tactile feedback to insert needles and accurately target acupuncture points, as the current workflow lacks imaging modalities and visual aids. Consequently, new practitioners often learn through trial and error, requiring years of experience to become proficient and earn the trust of patients. Medical students face similar challenges in mastering this skill. To address these challenges, we developed an innovative system, MRUCT, that integrates ultrasonic computed tomography (UCT) with mixed reality (MR) technology to visualize acupuncture points in real-time. This system offers offline image registration and real-time guidance during needle insertion, enabling them to accurately position needles based on anatomical structures such as bones, muscles, and auto-generated reference points, with the potential for clinical implementation. In this paper, we outline the non-rigid registration methods used to reconstruct anatomical structures from UCT data, as well as the key design considerations of the MR system. We evaluated two different 3D user interface (3DUI) designs and compared the performance of our system to traditional workflows for both new practitioners and medical students. The results highlight the potential of MR to enhance therapeutic medical practices and demonstrate the effectiveness of the system we developed.
Abstract:While tangible user interface has shown its power in naturally interacting with rigid or soft objects, users cannot conveniently use different types of granular materials as the interaction media. We introduce DipMe as a smart device to recognize the types of granular media in real time, which can be used to connect the granular materials in the physical world with various virtual content. Other than vision-based solutions, we propose a dip operation of our device and exploit the haptic signals to recognize different types of granular materials. With modern machine learning tools, we find the haptic signals from different granular media are distinguishable by DipMe. With the online granular object recognition, we build several tangible interactive applications, demonstrating the effects of DipMe in perceiving granular materials and its potential in developing a tangible user interface with granular objects as the new media.
Abstract:Target Speech Extraction (TSE) is a crucial task in speech processing that focuses on isolating the clean speech of a specific speaker from complex mixtures. While discriminative methods are commonly used for TSE, they can introduce distortion in terms of speech perception quality. On the other hand, generative approaches, particularly diffusion-based methods, can enhance speech quality perceptually but suffer from slower inference speed. We propose an efficient generative approach named Diffusion Conditional Expectation Model (DCEM) for TSE. It can handle multi- and single-speaker scenarios in both noisy and clean conditions. Additionally, we introduce Regenerate-DCEM (R-DCEM) that can regenerate and optimize speech quality based on pre-processed speech from a discriminative model. Our method outperforms conventional methods in terms of both intrusive and non-intrusive metrics and demonstrates notable strengths in inference efficiency and robustness to unseen tasks. Audio examples are available online (https://vivian556123.github.io/dcem).