Abstract:Design activity -- constructing an artifact description satisfying given goals and constraints -- distinguishes humanity from other animals and traditional machines, and endowing machines with design abilities at the human level or beyond has been a long-term pursuit. Though machines have already demonstrated their abilities in designing new materials, proteins, and computer programs with advanced artificial intelligence (AI) techniques, the search space for designing such objects is relatively small, and thus, "Can machines design like humans?" remains an open question. To explore the boundary of machine design, here we present a new AI approach to automatically design a central processing unit (CPU), the brain of a computer, and one of the world's most intricate devices humanity have ever designed. This approach generates the circuit logic, which is represented by a graph structure called Binary Speculation Diagram (BSD), of the CPU design from only external input-output observations instead of formal program code. During the generation of BSD, Monte Carlo-based expansion and the distance of Boolean functions are used to guarantee accuracy and efficiency, respectively. By efficiently exploring a search space of unprecedented size 10^{10^{540}}, which is the largest one of all machine-designed objects to our best knowledge, and thus pushing the limits of machine design, our approach generates an industrial-scale RISC-V CPU within only 5 hours. The taped-out CPU successfully runs the Linux operating system and performs comparably against the human-designed Intel 80486SX CPU. In addition to learning the world's first CPU only from input-output observations, which may reform the semiconductor industry by significantly reducing the design cycle, our approach even autonomously discovers human knowledge of the von Neumann architecture.
Abstract:In this paper, we describe approaches for developing Emily, an emotion-affective open-domain chatbot. Emily can perceive a user's negative emotion state and offer supports by positively converting the user's emotion states. This is done by finetuning a pretrained dialogue model upon data capturing dialogue contexts and desirable emotion states transition across turns. Emily can differentiate a general open-domain dialogue utterance with questions relating to personal information. By leveraging a question-answering approach based on knowledge graphs to handle personal information, Emily maintains personality consistency. We evaluate Emily against a few state-of-the-art open-domain chatbots and show the effects of the proposed approaches in emotion affecting and addressing personality inconsistency.
Abstract:Task-oriented dialogue systems have made unprecedented progress with multiple state-of-the-art (SOTA) models underpinned by a number of publicly available MultiWOZ datasets. Dialogue state annotations are error-prone, leading to sub-optimal performance. Various efforts have been put in rectifying the annotation errors presented in the original MultiWOZ dataset. In this paper, we introduce MultiWOZ 2.3, in which we differentiate incorrect annotations in dialogue acts from dialogue states, identifying a lack of co-reference when publishing the updated dataset. To ensure consistency between dialogue acts and dialogue states, we implement co-reference features and unify annotations of dialogue acts and dialogue states. We update the state of the art performance of natural language understanding and dialog state tracking on MultiWOZ 2.3, where the results show significant improvements than on previous versions of MultiWOZ datasets (2.0-2.2).